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Models of the Oceanic Internal Wave Field 

DIRK J. OLBERS 

Max-Planck-Institut flit Meteorolo•lie, Hamburgh Federal Republic of Germany 

In recent years, considerable progress has been made in internal wave research by a fruitful combination 
of experiment and theory. Kinematical models of the wave field appear to be well established, and 
dynamical models are evolving toward a stage of understanding the energetics and the interrelations of the 
waves within the oceanic field of motion. This review presents kinematical models of the wave field in terms 
of vertically progressive waves (WKB waves) as well as standing modes. Some emphasis is attributed to 
critical layer effects. Spectral models have been successfully developed for the wave field in the main 
thermocline. This appears to be in a stationary universal state with respect to spectral shape and level, 
whereas the upper ocean wave field shows considerable temporal and regional variability. Several ap- 
proaches for separating the internal wave contribution from turbulence and other contaminations in 
observations have been proposed. This problem is of particular relevance in the transition region between 
waves and small-scale turbulence at small vertical wavelengths. An accurate identification of reversible 
(wave induced) fine structure and irreversible fine structure is needed to determine the dissipation rate of 
the wave field and the mixing rates of the ocean. The search for dynamical relations of the wave field to 
environmental conditions has been extensive. The lack of dynamical correspondences between the wave 
spectrum and possible forcing fields in observations suggests that forcing is weak. Theoretical models of 
wave generation show that many mechanisms may contribute with equal efficiency. In concert with the 
observed low dissipation rates in the deep ocean, these results point toward the conclusion that there is no 
dominant source of energy but weak forcing by many different sources and weak dissipation. Under such 
conditions the interrelation between forcing and dissipation as well as the spectral form is controlled by 
internal transfer by wave-wave interactions which are very efficient in relaxing spectral distortions to the 
observed universal form. 
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1. INTRODUCTION 

Internal waves arise in a stably stratified fluid through the 
restoring force of gravity on water particles displaced from 
their equilibrium levels. Interfacial waves occurring between 
two superposed layers of different density are a familiar phe- 
nomenon, in particular at the upper free surface of the ocean in 
the form of surface waves. In the continuously stratified interior 
of the ocean the restoring force of gravity is much weaker (by a 
factor 6p/p), and the periods and wavelengths of internal waves 
are much larger than those of surface gravity waves. Internal 
waves have periods between the inertial period (2rr/f, where f is 
the Coriolis parameter) and the local buoyancy period (2rr/N, 
where N is the buoyancy frequency). This interval of about 10 
octaves is precisely fixed by kinematical reasons. Spatial scales 
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range from a few meters to a few tens of kilometers. In the 
spectrum of oceanic motions, internal waves are thus embedded 
between small-scale three-dimensional turbulence and the geo- 
strophic turbulence of the oceanic eddy field. 

The first scientific observations of oceanic internal waves 

were reported by the Norwegian explorer Fridtjof Nansen in 
the last decade of the nineteenth century. During his passage 
across the Barents Sea he noted that the forward motion of his 

ship Fram was considerably reduced when sailing on a thin 
layer of fresh water overlying saltier water. This phenomenon, 
which he called 'dead water,' was later explained by Ekman as 
being due to the drag by ship-generated interfacial internal 
waves. A historical discussion of observations of internal waves 

in the first half of this century can be found in Defant's [1961] 
book. Theoretical investigations of internal waves had preceded 
the observations by half a century. Interfacial waves were 
studied by Stokes [1847], and the extension to continuous 
stratification was done by Rayleigh [1883]. However, the impor- 
tant role of internal waves in the spectrum of oceanic varia- 
bility has been recognized only for a few decades, and we may 
look back on a period of intense research on this subject. The 
time has definitely passed when oceanographers merely con- 
sidered internal waves as a passive contaminant, as unwanted 
noise (lumped together with any other kind of 'turbulence') in 
the measurements. The ascent from 'noise' to 'signal' took place 
when by the combined improvement of measuring and data 
interpretation techniques and the guidance of theoretical ideas 
it became obvious that internal waves play an active dynamical 
part in the energetics of the oceanic circulation. 

1.1. A Survey of Recent Observation Techniques 

The present state of knowledge about the structure and 
importance of the oceanic internal wave field is strongly based 
on experimental evidence of the wave motion. A brief survey of 
experimental techniques and observations therefore may help 
the reader to get acquainted with the interplay of measure- 
ments and theory presented in this paper. 
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Fig. 1. Depth of selected isopycnals (23.75-25.25) interpolated from 
rapid successive CTD casts [Kh'se and Clarke, 1978]. 

Most early measurements of internal waves are records of 
temperature variations from thermometers at a fixed depth. 
The measurements of today are more sophisticated in adapting 
to the formidable task of obtaining a view of the highly com- 
plex space-time structure of the internal wave field. A great 
variety of devices have been designed to measure either the 
velocity associated with the wave motion or the temperature 
and salinity fluctuations which are due to the vertical displace- 
ments of the stratified fluid induced by the waves. 

Moored current observations constitute the main data base 

for constructing internal wave models. The common current 
meter measures the speed of the horizontal flow by a rotor and 
the direction by a vane. Other devices with acoustic or propel- 
ler sensors are also coming into use. The technique of mooring 
these instruments in the deep ocean was mainly developed by 
members of the Woods Hole Oceanographic Institution [e.g., 
Fofonoff and Webster, 1971]. Temperature sensors are fre- 
quently used in connection with moored current meters to 
obtain the vertical component of the current velocity through 
the what might be called slightly 'mutilated' heat equation w - 
-atT/a:T, where a:T is the mean vertical temperature gradient 
[Briscoe, 1975b]. Sensors which move through the wave field 
with speeds much larger than the phase speed of the waves yield 
a spatial snapshot of the wave fluctuations. Towed and 
dropped devices have been designed to collect data on the 
spatial structure of the motion. There are many kinds of 
dropped instruments measuring profiles of temperature, for 
example, the rapidly repeated sounding system on the platform 
Flip [Pinkel, 1975]. Thermistors arranged in a chain which is 
lowered from a ship and towed through the upper layers of the 
ocean have been used by, for example, LaFond [1962] and 
Charnock [1965] to document the evidence of internal wave 
motion. This technique maps a two-dimensional section of the 
thermal structure down to about 200 m depth. A towed depth- 
controlled 'fish' was used by Katz [1975] to follow particular 
isotherms at greater depths (700-800 m) and thereby to mea- 
sure vertical displacements. The Batfish is another, more so- 
phisticated towed device measuring pressure, temperature, and 
salinity on an undulating track through the water (down to 
about 400 m) and thus mapping a two-dimensional section of 
the density field [Woods and Minnett, 1979]. 

There are many other instruments and measuring techniques 
which reflect the effort required to collect reliable information 

on the wave motion. Noteworthy examples are displayed in 
Figures 1-5. Figure 1 shows the time history of displacements 
of selected isopycnals in the upper ocean extracted by interpol- 
ation from a time series of 66 successive conductivity- 
temperature-depth (CTD)casts [Kiise and Clarke, 1978]. The 
associated motion appears to be well correlated over the com- 
plete depth range, which apparently is a characteristic feature 
of internal waves in the upper ocean. Brekhovskikh et al. [1975] 
have designed a sensor with the specific aim of filtering out such 
low-mode motion. They used an insulated vertically stretched 
wire whose resistance is proportional to the average temper- 
ature of the layer in which it is immersed. Therefore it is 
sensitive mainly to low-mode oscillations. Figure 2 shows such 
measurements from the Black Sea obtained with 20-m sensors 

spanning the thermocline. Measurements of the velocity field in 
the upper ocean using a Doppler sonar have been made by 
Pinkel [1979, 1981]. The sound beam is scattered off drifting 
organisms in the sea; the velocity parallel to the beam is 
obtained from the Doppler shift of the returning signal. Figure 
3 displays perturbations of the velocity field dominated by 
inertial motions. An ingenious instrument measuring vertical 
displacements of isotherms in the deeper ocean is the yo-yo 
capsule of Cairns [1975]. This capsule freely drifts with the 
mean current, yo-yoing up and down approximately 15 m 
about a selected isotherm while sensing temperature and pres- 
sure. The data segment given in Figure 4 shows a couple of 
high-frequency waves riding on a large-amplitude wave with a 
period of about half a day. Profiles of relative horizontal cur- 
rent have been obtained by the electromagnetic velocity pro- 
filer of Sanford [ 1975], which measures the electric potential in 
the sea induced by the motion of the salty seawater in the 
magnetic field of the earth. Figure 5 shows two vertical profiles 
of each of the horizontal current components taken about half 
an inertial period apart at the same location. This picture is a 
simple but convincing illustration of the internal wave varia- 
bility of the oceanic motion at all depths. 

Internal waves are a three-dimensional phenomenon (the 
four-dimensional space-time continuum is constrained by the 
dispersion relation), but any of the commonly used sensors gets 
only one- or two-dimensional cuts of the three-dimensional 
variability: moored sensors record the time history of the fluc- 
tuations at a fixed point; towed and dropped sensors record a 
mixture of temporal and spatial structure. Single point or sec- 
tion measurements thus get only a limited amount of infor- 
mation, and quantitative interpretation of these data is ex- 
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Fig. 2. Vertical displacement of the thermocline for groups of 

short-period internal waves on crests of long-period waves (Black Sea, 
500 m from the coast, water depth 50 m, length of sensors 20 m, depth 
of sensors 25-44 m, thermocline depth 30-40 m, temperature changes 
in the thermocline from 22øC to 9øC) [Brekhovskikh et al., 1975]. 
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Fig. 3. Low-frequency velocity variations taken with a sonar at 50 
m depth slanted 7 ø down from the horizontal. Profiles are low-pass 
filtered in range and time as indicated by the black square. The greatest 
range corresponds to approximately 225 m depth [Pinkel, 1981 ]. 

tremely difficult. Further, most of the more conventional obser- 
vation techniques may yield a severely disturbed picture of the 
true fluctuations. Moored measurements suffer from a substan- 

tial unknown Doppler shift if the phase speed of the waves is 
not large compared to the velocity of lower-frequency currents. 
In this instance, moreover, the estimation of vertical displace- 
ment from temperature fluctuation and mean gradient becomes 
invalid [Ruddick and Joyce, 1979]. Freely drifting devices such 
as Cairn's capsule avoid this problem. Moored temperature 
records may also be contaminated by the vertical migration 
past the sensor of layered temperature fine structure induced by 
the wave motion [e.g., Phillips, 1971]. Decontamination of data 
from such effects (i.e., filtering out the true wave fluctuations) is 

only possible if experiments collect separable information 
about time and space structure and if certain knowledge about 
the contaminating fields is available. Many recent experiments 
have indeed proceeded in this direction. The step from single 
moorings to complex arrays of moored instruments was taken 
some years ago [Webster, 1972]. The most ambitious attempts 
were pursued with the IWEX experiment [Briscoe, 1975b] and 
the H mooring of the GATE experiment [K•ise and Siedler, 
1980]. Analysis and results of these experiments will be present- 
ed later. 

1.2. The Impetus of Spectral Modeling 

The first attempt to provide a unified picture of the internal 
wave field was made by Garrett and Munk [1972a], who syn- 
thesized a model of the complete wave number-frequency spec- 
trum of the motion on the basis of linear theory and the 
available observations. Except for inertial-internal waves and 
tides this model is believed to reflect the spectral features of the 
internal wave climate in the deep ocean and to possess a certain 
global validity. The model, which since its inception has been 
slowly changing with the accumulation of new data, may be 
viewed as a milestone in internal wave research. It may be said 
without overstating that it has influenced (if not originated) 
nearly all recent activities in experimental as well as in theoreti- 
cal investigations on internal waves. 

To the experimeter the model served as a guide as to what 
type of measurements would yield new information about the 
motion and what space-time scales could be expected in a 
specific part of the oceanic water column and should be covered 
by experimental strategy. Many of the instruments and experi- 
ments described above have been designed to measure specific 
properties of the spectrum. Most data were in good agreement 
with the model or could be incorporated by slight modifi- 
cations [Garrett and Munk, 1975; Mh'ller et al., 1978]. Apparent 
deviations from the model could only be found in the proximity 
of possible source regions of wave energy such as topographic 
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Fig. 4. A segment of yo-yo data. The light zigzag line is the depth of the 4.665øC isotherm [Cairns, 1975]. 
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Fig. 5. Vertical profiles of eastward and northward velocity taken 
12.5 hours apart at the same location [Sanford, 1975]. 

features [Wunsch, 1976] and regions of large mean flow [Rud- 
dick and Joyce, 1979] and in the upper thermocline [e.g., Brek- 
hovskikh et al., 1975; Kiise and Sledlet, 1980; Roth et al., 1981; 
Pinkel, 1981]. Here, under the direct influence of the atmo- 
spheric variability and with waveguide properties differing 
strongly from those in the deep ocean, the universal model 
turned out to be inappropriate. 

To the theoretican the canonical model of Garrett and Munk 

posed the problem of explaining its universality and specific 
spectral shape on a dynamical basis. At the same time he was 
enabled to study these questions by using the form and the 
scale parameters of the model in the evaluation of generation 
and dissipation mechanisms of internal wave energy [e.g., 
Miiller and Olbers, 1975]. A fundamental role in shaping the 
deep ocean spectrum could be attributed to nonlinear resonant 
wave-wave interactions within the wave field [Olbers, 1976; 
McComas and Bretherton, 1977; McComas and Miiller, 1981a] 
which transfer energy across the spectrum but conserve its total 
amount. However, interactions with external fields were also 
studied extensively. As the universality of the spectrum strongly 
suggests universality of at least some of the dominant dynam- 
ical processes, the interactions of the wave field may also reveal 
some results about the external fields which possess global 
relevance. 

It has frequently been conjectured that not all of the variance 
observed by the many kinds of measuring devices can be at- 
tributed to internal waves, but quantitative results could hardly 
be obtained. Also in this difficult problem of separating the 
internal wave part from nonwave contributions in observations 
the spectral modeling approach originated by Garrett and 
Munk made a crucial impetus. The knowledge of the approxi- 
mate shape of the internal wave spectrum allows one to formu- 
late the separation problem as a linearized inverse problem 
which is solved by linear matrix algebra. The great variety of 
different model classes for interpretation of the wave turbulence 
data may be narrowed a priori by application of appropriate 
consistency tests [Miiller and Siedler, 1976]. A carefully tuned 
combination of these methods may be used to arrive at a 
statistically consistent interpretation of wave turbulence data 
[cf. Olbers et al., 1976; Miiller et al., 1978]. 

This paper attempts a survey on the line of research which 
has started with the spectral modeling of oceanic internal 

waves. The time for such a review seems to be due, since after a 
productive decade the internal wave research has come to a 
stagnant phase, partly because many problems are solved 
whereas others turned out to be rather entangled. 

The kinematics of internal waves will be considered in some 

detail in section 2, which covers the theoretical properties of 
linear free waves, in particular their propagation characteristics 
and critical layers. Spectral models will be considered in section 
3. The separation problem of waves and turbulence in observa- 
tions is discussed in section 4. Dynamical models will be pre- 
sented in section 5, which gives a discussion of interaction 
processes affecting the oceanic internal wave field and, based on 
these, some aspects of the energy balance and the universality 
of the internal wave spectrum. 

This paper supplements recent reviews by Garrett and Munk 
[1979] on internal waves in the ocean and by Munk [1981] on 
the interrelation of internal waves and smaller-scale structures. 

Some of the theoretical framework can be found in the text- 

books by LeBlond and Mysak [1978], Phillips [1977], and 
Lighthill [1978] and in the papers by Miiller and Olbers [1975] 
and Thorpe [1975]. A comprehensive bibliography of the inter- 
nal wave research in recent years has been given and discussed 
in the IUGG reviews by Briscoe [ t975a] and Gregg and Briscoe 
[1979]. 

2. KINEMATICAL MODELS 

Waves are by definition an essentially linear disturbance of 
the wave-carrying medium: once they are generated, they prop- 
agate almost freely along their rays, slowly changing by nonlin- 
ear effects and coupling to their supporting background, 
thereby slowly losing attributes acquired during their particu- 
lar generation process. Strongly nonlinear effects such as break- 
ing occur only as very localized events in space and time. This 
picture is certainly true for surface gravity waves [e.g., ttassel- 
mann et al., 1973] and is generally accepted for internal waves 
as a working hypothesis. Indeed, linear kinematics work sur- 
prisingly well despite evidence for strong nonlinearities over 
some part of the spectral range (see section 5). 

A linear wave is characterized by an amplitude a(k), a wave 
vector k, and frequency c0, which are related by a dispersion 
relation c0- fl(k). Large-scale inhomogeneities (compared to 
period and wavelength) of the wave-carrying background can 
be treated by WKB methods. Waves then appear in the form of 
slowly varying wave trains which may be represented locally by 
wave groups characterized by a local dispersion relation 

c0 = fl(k, x, t) (1) 

A mean current U is included in fl as a Doppler shift kU so that 
co - kU represents the intrinsic frequency. A wave group prop- 
agates with the group velocity 

(2) 

On the trajectory (ray), wave vector and frequency change 
according to 

[• = -axf• (3) 

(3 = 8,fl (4) 

while changes in amplitude are conveniently expressed in the 
form of action conservation [Whitham, 1970; Bretherton and 
Garrett, 1968] 

8'(c0 ;kU)+•x(/• c0 ;kU):0 (5) 
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The wave energy density e-• la(k)l 2 is a quadratic functional 
of the amplitude. Equation (5) states that the wave action 
• [e/(0) - kU)] d3x is an adiabatic invariant (see, for example, 
Landau and Lifschitz [1970]) for slowly varying linear wave 
groups. The application of this general framework of wave 
kinematics to internal waves is the aim of this section. 

The kinematical structure of internal waves is determined by 
the mean buoyancy and current fields and the bottom topogra- 
phy. Only variations of these mean oceanic fields have an 
essential influence: the reflection properties of a flat horizontal 
bottom are fairly simple, a constant current merely implies a 
Doppler shift, and the waves feel the buoyancy field only 
through its gradients. Horizontal gradients of buoyancy and 
currents generally are small compared to the vertical gradients 
and therefore are neglected in the traditional kinematical 
models based on a horizontally homogeneous buoyancy (or 
Brunt-Viiisiilii) frequency N(z) = (g/po)•/2(-dp/dz) •/2 and shear 
current U(z). A typical profile of the mean current may be 
extracted from Figure 5 by averaging by eye the fluctuations of 
the internal wave motion. The buoyancy frequency usually has 
maxima below the upper mixed layer and in the deeper ocean 
where strong gradients of temperature and thus density exist. 
Typical peak values of N are 10 -2 s- x (period 10 min) in the 
upper (seasonal) thermocline and 10- 3 s- x (period 1.5 hours) in 
the lower (main) thermocline (see Figures 8 and 12). 

A further external parameter which is essential for the kin- 
ematic description of internal waves, in particular for waves of 
low frequency and larger wavelength, is the local Coriolis fre- 
quency f-- 2Q sin (latitude) associated with the earth's angular 
velocity Q. In most kinematical models,f is assigned a constant 
local value (the f plane approximation). However, if a wave 
group travels substantial distances on the globe, the variation 
off with latitude must be taken into account. 

Horizontal variations of N and U of large scale (in a WKB 
sense) may be considered in horizontal refraction models, while 
variations with scales comparable to (or smaller than) those of 
the waves define scattering problems discussed in the section on 
dynamical models. Latitudinal variations of the Coriolis fre- 
quency may also be treated by a WKB theory or by more 
sophisticated theories. Two basic concepts are used to describe 
the vertical structure of internal waves: vertically progressive 
waves and vertically standing waves (generally denoted 
'modes'). The first concept is somewhat more general, though 
applicable only if the vertical wavelength is small compared to 
the vertical scales of N and U, since it allows independent 
upward and downward propagating waves. Vertically standing 
waves represent the vertical eigenmodes of the complete water 
column (the ocean acts as a wave duct) and propagate only 
horizontally. Which of these concepts is more adequate for 
describing the real ocean must be determined by experiments. 
This will be discussed in section 3. Here the basic ingredients of 
the kinematical models will be presented. 

2.1. Vertically Progressive Waves 

In a geostrophic mean flow the horizontal density gradient 
affects the WKB approximation only in higher orders [Olbers, 
1981b]. Thus the kinematics are determined by the slowly 
varying buoyancy frequency N(x) and current U(x), where x = 
(xx, x2, x3 - z) denotes the three-dimensional position vector. 
A wave with a phase factor exp {i(kx- 0)t)} then obeys the 
local dispersion relation 

0) = fl(k, x) = 0)o + kU(x) (6a) 

x 3 

u k 

Inertial Frequency Buoyancy Frequency 

Fig. 6. The wave number vector k, the group velocity v, and the 
hodograph of the particle velocity u(t) near the inertial frequency and 
the buoyancy frequency, respectively; k is normal to both v and u and k 
lies here in the (x:, x3) plane; 0 is the inclination with respect to the 
horizontal plane (adapted from Garrett and Munk [1979]). 

where the intrinsic frequency is given by 

kh 2 f2 k32• too = no(k, x) = N'(x)-•- + •j 

Equivalently, 

t/2 

= {N2(x) cos 2 0 + f2 sin 0} x/2 (6b) 

(k3/kn)2 N2(x) -- 0)0 2 = = tan 2 0 (6c) 
0)0 2 _f2 

which relates the inclination 0 of the three-dimensional wave 

vector k = (k•, k2, /ca) to the intrinsic frequency 0)0 (cf. Figure 
6). In these expressions, k is the modulus of k, and k• is the 
modulus of the horizontal wave vector k• = (k•, k2). The intrin- 
sic frequency 0)0 is restricted to f < 0)0 < N and is independent 
of the magnitude ofk. The ray equations (2), (3), and (4) take the 
form 

• = c•fl/Ok• = v• + Ui 

i, = -OQ/Ox, = r,- kj •U/•x, i= 1, 2, 3 (7) 
• = const 

where v and r are the intrinsic group velocity and rate of 
refraction: 

N 2 -- _f2( 2_f2 ) •0 2 •0 2 •0 
V = 0k• 0 = •okn 2 •i _f2 kx, k2, - N2 .... k 3 • •o 2 

(8) 

r=-O•flo= N N 2-wo 2 Wo N2 - f 2 
Well-known properties of the wave group propagation are that 
the intrinsic stretching or shrinking of the wave vector occurs 
always along the gradient of the buoyancy frequency and that 
phase and group propagation of a wave are orthogonal 
(v. k = 0), nicely demonstrated in tank experiments by Mow- 
bray and Rarity [1967]. Also, the local particle motion takes 
place in the plane orthogonal to k because of incompressibility. 
The polarization vector 

U,(k) = C(mok, + •k2) 

U:(k) = C(•ok: - •k,) (9) 

( •o•-' • ) Ua(k )= C -•o N 2 .... k3 • •o 2 

of the wave velocity field indicates elliptical polarization 
(Figure 6): at near-inertial frequencies w •f(where k, 2 >> k32) 
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the particle motion is almost horizontal and circular; at higher 
frequencies the ellipse tends toward the vertical and becomes 
more eccentric with almost up-and-down motion at 0)0 •< N 
(where ks 2 >> kn2). The normalization factor C is conveniently 
chosen as (0)okn)- x {(N 2 _ 0)02)/(N 2 _f2)} x/2. Then the total 
local energy density of the wave component (averaged over a 
wave period) 

• -- «(u•u• + N2•)- 21a(k)l 2 
and its energy flux vector 

4• = P-• = 2la(k)12v = ev 

(10a) 

(lOb) 

take a simple form in terms of the current amplitude a(k) 
defined by 

u(x, t) = a(k)U(k) exp {i(kx -- 0)0} + c.c. 

•(x, t) = a(k)iU3(k)/0)o) exp {i(kx - 0)0} + c.c. (11) 

p(x, t) = a(k)C(0)o 2 _f2) exp {i(kx - 0)0} + c.c. 

These expressions also give the vertical displacement • and the 
pressure field p of the wave. Equation (10b) shows that the wave 
energy flux becomes the product of the energy density and the 
group velocity, a relation which is true for many wave types. 

The WKB theory is completed by reflection conditions for 
the rays at the sea surface and at the bottom. These are given, 
for example, in the textbooks by Phillips [1977] and LeBlond 
and Mysak [1978]. For a rigid boundary sloping at an angle • 
with respect to the horizontal (i.e., x3 = xx tan •) the reflected 
wave vector (Ix, 12, 13) is given by 

(1 + tan2 o• sin20)k x + 2k3 tan • 
1- tan 2 • sin 2 0 

I1 --- 

12 -- k 2 (12a) 

(1 + tan 2 • sin 20)k 3 + 2kx tan • sin 2 0 
I s -- _ 

1 - tan2 •g sin2 0 

where (kx, k2, k3) is the incident wave vector with the incli- 
nation angle 0 given by (6c). If tan 2 • sin 2 0 < 1, that is, 
0)2 < %2 with 

0)s 2 __ N 2 sin 2 • +f2 cos 2 • (12b) 

the reflection process is horizontally transmissive in the sense 
that the group velocities of the incident and the relfected wave 
point in the seme horizontal direction. For 0)2 > %2 the hori- 
zontal group velocities are opposite to each other, and the 
reflection process is said to be horizontally reflective. The fre- 
quency % thus is an important parameter of the wave field 
close to sloping bottoms. Waves with a frequency below % will 
be reflected backward if they impinge on a sloping bottom. 
Waves with 0) > % must proceed up the slope, which may lead 
to accumulation of wave energy at topographic features. 
Consequences of this process will be considered in section 5.1. 

For a single monochromatic wave the wave pattern at a fixed 
position is stationary, and the action conservation (5) takes the 
form 

Od(v + vXe/Oo)} = 0 (13) 

stating that wave action flux through any cross section of a ray 
tube is constant. This equation and the ray equations (7) deter- 
mine global changes of the wave parameters along the ray. 
Solutions of the ray equations (7) and the action conservation 
(13) are discussed below. 

In a horizontally homogeneous ocean with a constant hori- 
zontal mean current (the traditional kinematical model), inte- 
gration of (7) and (13) yields the constancy of the horizontal 
wave vector k• and the intrinsic frequency 0)o, whereas the 
vertical wave number and energy change according to 

k3(g ) • [N2(z) -- 0)0211/2 

N2(z) _f2 
8(2) • 1/v 3 • [N2(z ) __ 0)0211/2 

(14a) 

The velocity components and the displacement then scale as 
(the 'WKB scaling') 

Ul, [/2 '• a(k). C • [N2(z)- 0)02] TM 

u3, • • a(k). C[N2(z) -- 0)02] - 1/2 ,• [N2(z)_ 0)02] - 1/4 
(14b) 

which may be inferred from (10), (11), and (14a). Thus when a 
wave group propagates toward a region of lower N(z), the 
vertical wave number and the group velocity tend to zero, but 
the group still reaches the depth where N(z)= 0)o (turning 
depth) in a finite time, and internal reflection occurs. Near this 
depth the WKB solution becomes invalid and should be re- 
placed by solutions in terms of Airy functions [Desaubies, 1973, 
1975]. These show that the energy 8½) possesses a finite maxi- 
mum at the turning depth rather than the weak singularity 
given by (14). 

By allowing the current to have a vertical shear (i.e., 
U- U(z)), another important kinematical feature is intro- 
duced. Here still (kx, k2)= const, but the intrinsic frequency 
0)o(Z) = 0) - kU(z) now varies with depth, and (6) and (13) yield 

(15) 

A wave group propagating toward increasing k ß U(z) and thus 
decreasing 0)o may encounter a level where 0)o approaches f 
Here ks and 8 tend to infinity, the wave group shrinks, its 
vertical shear increases, and the group velocity tends toward 
the horizontal. However, in contrast to the turning depth be- 
havior, the group never reaches the level where 0)o =f [Bre- 
therton, 1966]. Dynamical considerations suggest that near this 
critical layer where the wave shear becomes very large there 
will be substantial dissipation and the wave will be absorbed by 
the mean flow [Booker and Bretherton, 1967]. 

Horizontally homogeneous models are of limited value, in 
particular when discussing internal waves in the upper ocean, 
where N and U are known to vary in the horizontal direction 
on a broad range of scales. The effect of horizontal inhomoge- 
neities of large scale on the oceanic internal wave field has been 
investigated only for very special cases. Samodurov [1974], 
Miropol'skiy [1974], and Miropol'skiy et al. [1976] studied the 
propagation effects in a density front with a vertically constant 
but horizontally varying buoyancy frequency. These authors 
found critical layer properties of the wave at the point on the 
ray where the intrinsic frequency equals the local buoyancy 
frequency, that is, at 0)o--N. The interaction with a shear 
current is taken into account in the work of Magaard [1968] 
and Mooers [1975a], who considered normal incidence of 
waves onto a geostrophic current, and Jones [1969] and 
Mooers [1975b], who investigated the propagation in a geo- 
strophic flow with constant buoyancy frequency and constant 
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OLBERS' MODELS OF THE OCEANIC INTERNAL WAVE FIELD 1573 

current shears. In this latter work, critical layer conditions are 
found at a frequency between 0)0 = fand 0)0 = N. 

The propagation of internal waves in geostrophic current 
with straight, sloping isopycnals was analyzed by Olbers 
E1981b]. For this configuration, which covers the cases dis- 
cussed above, the refraction equations can still be integrated 
analytically. Taking the current into the x2 direction, it is found 
that the frequency of encounter 0), the wave number compo- 
nent k2 along the current U2, and the wave number component 
kll parallel to the isopycnals remain constant, whereas the 
normal component changes along the ray. The waveguide is the 
region defined by 

(_Dc2(X1, X3) • 0)0 2 = [0) -- k2U2(Xl, x3)] 2 • N2(x1, x3) (16a) 

with 

2 L2(xl, x3)k2 2 q_ f2kl 12 
k2 2 q_ kl 12 

2 L2(xl, x3) = N2(xi, x3)Pi +f2p32 
(16b) 

where p = (p•, P3) is the normal to the isopycnals in the (x•, x3) 
plane. At 0)0 = q-0)c and 0)0 = q-N, waves are'" reflected, and 
at 0)0 = q- L (which is inside the waveguide), waves encounter a 
critical layer with a valve type behavior' these surfaces can be 
penetrated from one side, while incidence from the other side 
results in absorption. A sketch of this behavior is shown in 
Figure 7. For a horizontally homogeneous ocean (pl = 0) one 
recovers the critical layer at 0)c2 = L 2 =f2, and for a vertically 
homogeneous ocean (p3 = 0) the critical layer shifts to 0)02 = 
L 2 = N 2, the case treated by Miropol'skiy [1974] and others. 
The conservation of action takes the form 

v•_(e/0)o) = const (17) 

where v, is the component of the intrinsic group velocity 
normal to the isopycnals. It is then shown, in agreement with 
the conception of internal reflection and critical layer absorp- 
tion, that the energy possesses an integrable singularity at the 
reflecting surfaces 0)0 = ---0), and 0)0 = q- N, while at 0)0 = 
q- L a nonintegrable singularity appears for waves arriving 
from the nonpenetrative side. 

The WKB approximation presented so far is valid for large 
values of the Richardson number Ri = N2/(r3U/r3z) 2. The be- 
havior at critical layers is quite different for small Richardson 
numbers. For wave propagation in a horizontally homoge- 
neous shear flow, Booker and Bretherton [ 1967] found that very 
little energy and momentum is transmitted or reflected. The 
wave energy flux is attenuated by a factor exp {2;z(Ri- ¬)} 
across the critical layer, which in the limit of large Ri recovers 
the WKB prediction of complete absorption. Jones [1968] 
extended the theory to Richardson numbers in the range 0 < 
Ri < ¬ and found that here substantial reflection may occur. At 
any given wave number and intrinsic frequency there is a 
critical value of Ri below which the wave is able to extract 

energy and momentran from the mean flow, so that the reflec- 
ted wave is actually larger than the incident wave. The intimate 
relation of such an 'overreflection' process to the instability of 
the ambient shear flow at Ri < ¬ was analyzed by, for example, 
Lindzen and Rosenthal [1976]. 

2.2. Vertically Standing Waves 

Vertically standing waves are formed if long coherent wave 
trains make many reflections at top and bottom or at turning 

/ 
/ 

/ 

Fig. 7. Sketch of rays for a wave (co, k 2, kll ) for different kll, project- 
ed onto the (xx, x3) plane. The current is normal to this plane, and the 
vector p is normal to the sloping isopycnals. The forbidden region for 
wave propagation is hatched. Reflection occurs at coo = +-coo and 
coo = +-N. At coo = -+ L, wave A is allowed to penetrate, whereas B' 
runs into a critical layer. 

points and if fixed phase relations between upward and down- 
ward reflected parts of the wave pattern are established. From a 
mathematical point of view a representation of an internal 
wave field in terms of standing modes is always possible (since 
the vertical modes constitute a complete set of eigenfunctions), 
but physically, it may be inappropriate. A well-developed 
standing mode for the full water column appears a priori rather 
questionable, at least for high mode numbers (i.e., small vertical 
wavelengths), since typical vertical propagation times are com- 
parable to typical relaxation times of nonlinear interactions 
[Olbers, 1976; McCornas and Bretherton, 1977]. Phases then 
will be randomized, and energy will be exchanged among the 
waves before a mode can be formed. Moreover, the basic state 
of the wave duct is often oversimplified, since modal wave 
models almost exclusively neglect the mean current shear and 
use modes computed from N(z) alone. But even a weak mean 
shear current may have significant influence on the wave struc- 
ture, since phase speeds of internal waves are comparable with 
typical changes in the current profile and critical layers may 
appear. Interpretation of internal waves in an ocean with shear 
in terms of 'shearless' modes will yield time-varying mode 
amplitudes even if the wave field is strictly stationary. In the 
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1574 OLBERS' MODELS OF THE OCEANIC INTERNAL WAVE FIELD 

following discussion some features of shearless and shear 
modes will be discussed. 

Consider waves with phases exp {i(kn ß xn - cot)} in a hori- 
zontally homogeneous wave duct. Standing modes based on 
the density stratification alone are defined by the eigenvalue 
problem (appropriate to the Boussinesq approximation with 
upper free surface) 

d2(p 
dz 2 

N:(z) - 
+kn 0=0 

d9 gkn 2 
dz co2 __ f 2 (P = 0 at z = 0 (18) 

•=0 at z= -H 

Solution of this Sturm-Liouville type problem yields an infinite 
complete and orthogonal set of modes (pv(z), v = 0, 1, 2, ..., 
with eigenvalues coy2 if k• is prescribed, or vice versa. The 
numbering may be arranged such that the mode %½) has v - 1 
zero crossings in the interior 0 < z < -H. Then co• is a mono- 
tonically decreasing sequence. The barotropic or surface mode 
(p0(z) has coo >> co• and vanishes only at the bottom. It is associ- 
ated with the displacement of the free surface and represents 
surface waves. The baroclinic or internal modes (p•(z), v > 1, 
exists only in the range f < co• < Nmax, where Nma x is the maxi- 
mum buoyancy frequency in the water column. These modes 
represent internal waves. The modes (pv(z) describe the structure 
of the vertical current and buoyancy field, whereas dq•/dz 
applies to the horizontal current and pressure field. 

In the presence of a horizontal mean current [U(z), V(z)] the 
vertical eigenvalue problem (18) must be replaced by the 
Taylor-Goldstein equation [e.g., LeBlond and Mysak, 1978] 

d2rp (( N2 d20/dz2_kn2)r.p__ 0 dz 2 + • • c) 2 - 0 - c 
drp g + (0 - c) dO/dz 
dz (0 - c) 2 (p = 0 at z = 0 (19) 

(p=0 at z= -H 

where c = co/k• is the phase speed and 

O(z) = knU(z)/k• = U(z) cos • + V(z) sin • (20) 

which is the component of the mean current in the direction of 
the wave vector k• = k•(cos •, sin •). Again, (p determines the 
vertical structure of the vertical velocity of the wave. Rotational 
effects have been neglected in (19); that is, 602 >>f2 is assumed. 
The Taylor-Goldstein equation is usually formulated for a 
parallel mean flow (i.e., V --0), but its form is retained for a 
spiraling current by the definition of O(z). Note that (18) with 
f = 0 is recovered from (19) with [7 = 0. However, the character 
of the eigenvalue problem is severely changed by the inclusion 
of the shear current. Not only does this lead to shear modifi- 
cation of the internal wave modes, but the singularity of (19) at 
depths where O(z)= c (the critical levels) is responsible for 
additional modes. These are either unstable or damped (i.e., the 
eigenvalue c = c, + ici is complex) or have real eigenvalues but, 
in contrast to the internal wave modes, have discontinuous 
eigenfunctions at the critical levels. Unstable modes are con- 
fined to gYmin < C, < 0max, with ci bounded by Howard's semi- 
circle theorem, and do not occur if the Richardson number 
(based on [7) is above ¬ everywhere in the water column (Miles' 
theorem) [c.f. LeBlond and Mysak, 1978]. A complete classifi- 
cation of the modes of the Taylor-Goldstein equation has been 

given by Banks et al. [1976]. The class of unstable modes is 
finite. Stable modes include (1) a finite set of damped modes 
(those conjugate to the unstable modes), (2) a discrete set of 
modes which essentially are internal waves modified by the 
shear (these have c > Omax or c < 0min) , (3) a finite set of modes 
with c inside the range of the velocity distribution (these have 
branch points at the critical levels), and (4) a continuous set of 
modes which also have c inside the range of [7(z) (these have 
discontinuities at the critical levels). 

Figure 8 illustrates the behavior of shearless and shear modes 
calculated from the eigenvalue problems (18) and (19), respec- 
tively [Peters, 1980, 1983]. The mean profiles (Figure 8a) of 
N(z) and U(z) are from the JASIN experiment. The profile of 
the stability frequency consists of a high-frequency waveguide 
in the upper ocean and a low-frequency waveguide at greater 
depths extending to the bottom. These are separated by a broad 
minimum of intermediate depths with N around 1 cph. The 
current decreases almost monotonically toward the bottom 
and is approximately unidirectional toward the northwest. 

The dispersion curves of the first five shearless modes are 
shown in Figure 8b, and some low-frequency and high- 
frequency modes in Figure 8c. The latter modes illustrate the 
trapping of energy in the region co < N(z): here the modes have 
a sinusoidal appearance, whereas they fade away exponentially 
beyond the turning points. Notice the distortion of the disper- 
sion curves close to the minimum of N(z) separating the upper 
and lower thermoclines [c.L Eckart, 1961]. Here the wavelength 
suddenly decreases for a slight increase of frequency (this causes 
reduction of the waveguide to the extent of the seasonal ther- 
mocline). The phase velocity drops and the group velocity 
attains low values in this frequency range. Also, the dispersion 
curves come very close to each other by pairs. These features 
may lead to distortions in observed spectra and coherences 
[e.g., Katz and Briscoe, 1979] either because of the kinematical 
reasons or because of enhanced nonlinear coupling for the 
small separation of the eigenfrequencies. 

Shear modes are discussed in Figures 8d-8f The Richardson 
number for the profiles in Figure 8a is above ¬ at all depths, so 
that only stable modes exist. The phase speed c• and hence the 
eigenfrequency co• = knc,, of the mode v now depend on the 
magnitude kn of the wave vector as well as its direction 
Apparently, the discussion may be restricted to positive fre- 
quencies, since as in the case of the shearless modes, 
•) = -co• (kn, • + tO. The mean flow is almost parallel with a 
mean direction of • = 135 ø counted from east. The deviations 

from this angle introduce small asymmetries in the dispersion 
curves with respect to the direction. These will be disregarded 
in the following discussion. Since 0mi n •-0, critical levels may 
occur in the co - kn plane in the sector between co = kn 0max and 
co = 0. This sector is present if kn has a component into the 
direction of the mean current U. The internal wave modes lie 

above this sector (Figure 8d, upper panel). Compared to the 
shearless modes, these waves which travel downstream undergo 
an increase of frequency and may even be observed above the 
maximum stability frequency. For kn perpendicular to U (again 
neglecting the small deviation from a parallel flow) the critical 
layer sector vanishes, and the shearless modes are recovered. If 
kn points opposite to U, the frequencies are decreased (Figure 
8d, lower panel). These waves are traveling upstream. At low 
wave numbers the group velocity still points into the direction 
of kn, and thus also, energy propagates upstream. At larger 
wave numbers the group velocity reverses, and energy thus 
propagates downstream, that is, opposite to the phase propaga- 
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OLBERS.' MODELS OF THE OCEANIC INTERNAL WAVE FIELD 1575 

tion. A more detailed view of the dispersion curves for mode 1 is 
given in Figure 8e. Here the asymmetries caused by the non- 
parallelism of the flow are revealed in the difference between the 
curves for • = 90 ø and • = 180 ø as well as • = 0 ø and • = 

-90 ø. Figure 8fdisplays the first mode at co = 1.5 x 10-3 s-• 
(0.86 cph). It is fairly obvious that the shear current has pro- 
found influences on the structure of the modes. In particular, 
the upstream modes are significantly different. Note that the 
frequency of the modes considered here is close to the inter- 
mediate minimum in the N profile. Here the modes are strongly 
modified by the shear, while low-frequency modes undergo 
only minor changes. 

2.3. The Planetary Waveguide 

The kinematical models presented so far have neglected the 
latitudinal dependence of the Coriolis frequency. This may be 
incorporated and leads to latitudinal bounds of the waveguide. 
Waves of a frequency co traveling poleward encounter reflection 
at the latitudes given by co = 2f• sin •0. As demonstrated by 
Munk [1980], the behavior at these turning latitudes is closely 
analogous to the reflection process of vertically progressive 
waves in an ocean with a variable N(z) profile. Kroll [1975] 
presented a WKB theory of internal waves on a/• plane (i.e., 
taking/• = df/dx2 constant). Munk [1980] considers a/• plane 
with turning point solutions in terms of Airy functions, and 
Munk and Phillips [1968] consider Airy function solutions on a 
sphere. A slightly more complete analysis is provided by Fu 
[1981]. Again, as in the vertical direction, the problem of 
propagating versus standing waves appears. Preference for the 
latter case seems the more appropriate the narrower the lati- 
tudinal extent of the waveguide. 

3. SPECTRAL MODELS 

Oceanic internal waves are a phenomenon best treated statis- 
tically. Because of broadband forcing by a great variety of 
generation mechanisms and because of nonlinear coupling, the 
wave field generally consists of a large ensemble of wave 
groups. The wave motion may be represented by a continuous 
superposition of linear waves with random amplitudes and 
phases each of which moves in (x, k) space subject to the 
kinematical constraints discussed in the last section and weakly 
affected by dynamical processes which will be discussed in 
section 5. It will be shown that a superposition of vertically 
progressive waves 

u(x, t) =; d3k a(k)U(k) exp [-i(k ß x - cot)] 
+ complex conjugate (21) 

adequately describes the state of the wave field away from 
turning points in the deep ocean. For high-frequency waves in 
the upper ocean a modal representation seems to be more 
appropriate. The basic difference lies in the statistical concep- 
tion associated with these representations. It is reasonable to 
assume statistical independence of WKB waves with different 
wave vectors far from reflecting boundaries, that is, 

(a(k)a(k')) = 0 
(22) 

(a(k)a*(k')) = « E(k)c$(k - k') 

while a modal field of upward and downward propagating 
waves with the same frequency and horizontal wave vector 
must have equal amplitude and deterministic phase relation to 
form the standing mode. 

The statistical properties of the wave field are then con- 
densed in the spectrum E(k), which is the density in k space of 
the total local energy density. The spectrum represents a com- 
plete description of the statistical state if the wave field is 
Gaussian. For the deep-ocean wave field observed during 
IWEX this was shown by Briscoe [1977] to be so 'most of the 
time, but not always.' 

Measurements yield series of data points. The adequate tool 
for interpretation is spectral analysis, which converts the data 
to autospectra and cross spectra of frequency or wave number. 
The modeling of the energy spectrum E(k) from such one- 
dimensional data spectra is the subject of this section, where the 
basic relations are inferred by simple reasoning, and the next 
section, where a more formal approach is introduced which 
allows a quantitative separation of waves and turbulence in the 
data. The state of the wave field in the deep ocean (which is 
defined here as the main thermocline and region below) and the 
upper ocean (which is defined here as the region above the main 
thermocline, in particular the seasonal thermocline) will be 
considered separately. 

3.1. The Wave Field in the Deep Ocean 

Illustrative examples of moored, towed, and dropped auto- 
spectra are displayed in Figure 9. Moored spectra generally 
show significant drops below f and N (Figure 9a [from Cairns 
and Williams, 1976]) which suggest some relations of the fluctu- 
ations with internal wave kinematics. The energy at the inertial 
period dominates, followed by a steep decrease with a spectral 
power law slope of about -2. Dropped spectra (Figure 9b 
[from Hayes, 1975]) and towed spectra (Figure 9c [from Katz, 
1975]) decrease with slight changes of the spectral slope. How- 
ever, they reveal no obvious indication of internal wave kin- 
ematics, since there are no natural bounds of wave numbers as 
in the frequency range. Though moored spectra therefore 
appear more useful for identifying internal waves, they do not 
allow a unique identification: fluctuations in the frequency 
rangef < co < N may have horizontal and vertical wavelengths 
which are inconsistent with the dispersion relation. The identifi- 
cation of internal waves from purely spatial information as 
'towed and dropped spectra is hindered by the fact that baro- 
clinicity (measured with towed devices)may also be caused by 
geostrophically balanced flows of lower frequency, and vertical 
variations in temperature or current (measured with dropped 
devices) might likewise correspond to the quasistationary lay- 
ered fine structure of the ocean. Separation of internal waves 
from such phenomena requires information linking the struc- 
ture of the fluctuations in the time and the space domains. This 
kind of information is contained in the cross spectra (or coher- 
ences and phases) relating the time histories of measurements at 
different times. Many of these measurements have been made in 
recent years following the pioneering work of Webster [1972] 
and Siedler [1971, 1974] with moored sensors separated by a 
vertical distance (yielding the moored vertical coherence) or by 
a horizontal distance (yielding the moored horizontal coher- 
ence). Whereas coherences from sensors supported by moorings 
are severely contaminated (this will be discussed below), the 
floating measurements of Cairns [1975] and Cairns and Wil- 
liams [1976] are not (Figure 10). Measurements with time- 
lagged pairs of dropped devices allowed estimation of the 
dropped lagged coherence I-Hayes, 1975]. Also, cross spectra 
relating simultaneous spatial sections have been published, for 
example, the towed vertical coherence [Katz, 1975] and the 
dropped horizontal coherence [Stegen et al., 1975]. 
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Fig. 8. Shearless modes and shear modes computed for the mean 
buoyancy and mean current profiles shown in Figure 8a. The disper- 
sion curves (Figure 8b) and modes (Figure 8c) are computed without 
the shear current. The dispersion curves of shear modes are shown in 
Figure 8d (upper panel shows downstream waves; lower panel shows 
upstream waves). The angular dependence of the first mode is dis- 
played in more detail in Figure 8e, and the vertical structure in Figure 
8 f[Peters, 1980]. 

Provided that the observed fluctuations are caused merely by 
internal waves, the relation of all these cross spectra and the 
energy spectrum E(k) is fairly simple and may be computed 
from the representation (21) and the statistical properties (22). 
Thus, for example, the one-sided cross spectrum between 
moored sensors with separation r becomes 

Aij(r, co) = 1 t)u;(x + r, t + z)) exp (--icoz) 
= • d3kUiUi*E(k)6[co - f•(k)] exp (-ik- r) (23) 

which represents a weighted projection of the spectral density 
E(k) onto the dispersion surface co = f•(k). Cross spectra of 

towed and dropped sensor pairs may be expressed as similar 
one-dimensional projections. Recovering the complete spec- 
trum E(k) by direct methods (e.g., by Fourier transformation of 
(23)) appears to be impossible in view of the sparse (in space) 
data base, so that indirect methods must be employed. The 
most extensive and far-reaching attempt has been undertaken 
by Garrett and Munk and published in a series of papers 
[Garrett and Munk, 1972a, 1975, 1979] describing the carving 
of the first coarse model and its subsequent streamlining, which 
was made possible by the increasing feedback with the experi- 
mental endeavor reported above. On the basis of such spectral 
data obtained at different locations, depths, and times and by 
different instruments (but nevertheless showing surprising simi- 
larities) they proposed a spectral model with the following basic 
features [Garrett and Munk, 1975]: (1) horizontal isotropy, (2) 
vertical symmetry, (3) horizontal scales of the order of some 
kilometers and vertical scales down to tens of meters, and (4) a 
-2 slope in frequency domain with a cuspy increase at the 
inertial frequency and a -2.5 decrease in wave number. Be- 
cause of horizontal isotropy and vertical symmetry (which orig- 
inates from the modal approach of Garrett and Munk) the 
spectrum is completely specified by its density E(•,/•) in (•,/•) 
space, where • and/• are the moduli of horizontal wave vector 
and vertical wave number, respectively. Likewise, the densities 
E(•, co) or E(/•, co) may be used. These distributions of energy in 
wave number-frequency space are displayed in Figure 11. The 
method of construction from the observations will be described 

briefly. 
The spectrum was factorized in the form 

E(o•, co) = eB(co)A(o•, co) (24) 

where the frequency distribution B(co) and the wave number 
distribution A(0•, co) of each frequency are normalized so that e 
represents the total local energy. The wave number distribution 
A(0•, co) was chosen from a simple model class: Garrett and 
Munk assumed that A(0•, co) has the same shape at each fre- 
quency and only one scale parameter %(co) characterizing its 
width. Then 

(25) 

The second restriction concerns the form of the wave number 

scale %(co). Guided by their modal approach, the authors as- 
sumed that %(co) corresponds roughly to a constant mode 
number v, which is obtained if the continuum of the (0•, co) 

' I ' I ' I ' I ' -- 
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domain is resolved in equivalent modes. Solving the modal 
eigenvalue problem (18) by WKB approximation yields the 
modal dispersion relation 

fo . //N2(Z) __ (.02•1/2 
at,, I az! 772' -- • '• = v• (26) 

J_. \ co -f •/ 

relating co to the discrete wave numbers at,, v = 1, 2,.... Thus a 
choice 

ot,(co) = (v,lt/bNoXco 2 _f2)1/2 (27) 

corresponds to a constant number v, of equivalent modes at 
low frequencies and therefore also to a scale of the local vertical 
wave numbers 

10 

cph T 
1 

.._ 71; (2)211/2 • v,r•N(z) fl,(CO, Z) • [N2(z)- bNo 

10-2 

$-1 
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cpkm 

(28) and chosen as 

B(co) = (2/r•Xf /coXco 2 _f2)- 1/2 (30) 

The shape in wave number domain A(2) came from the (one- 

0.0 0.4 0.8 12 
0 • • • 

800 

cph 

1 

1600 

• =0.86 cph 
Fig. 8f 

which is almost constant for co << N. The scales ot, and/•, are 
related by the dispersion relation (6) of progressive waves. The 
parameter 

bNo = N(z) 

is an integral scale of the stratification. A typical value for the 
midocean is bNo=6.5 m/s with b=1300 m and N o= 
5 X 10 -3 S -1. 

Though rather restricted, this model proved to embrace the 
complex structure of the observations. The spectral shape in the 
frequency domain was inferred from the moored energy spec- 
trum 

© MS(co) = dot E(ot, co) = eB(co) (29) 
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Fig. 9a. Moored vertical displacement spectra [Cairns, 1975]. 

sided) towed and dropped spectra of vertical displacement 

TS(kx) = (2e/•r) dcoB(co)(U3U3*/co 2) 

- - 1/0•, 

DS(/•) = e dcoa(co)(V3V3*/co:)A(l•/l•,) 

(31) 

WAVE / ENG TH (dec/bars) 
300 IOO IO 2 

IO 3 
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t= 2,5 
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WAVE NUMBER (cycles per dec/bar) 

Fig. 9b. Dropped vertical displacement spectra [Hayes, 1975]. 
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Fig. 9c. Towed vertical displacement spectra [Katz, 1975]. 

If A(2) •, 2-' for 2 >> 1, then TS •, k•-' and DS •,/•-' at high 
wave numbers. A choice 

A(2) = (t- 1)(1 + 2) -t (32) 

with t = • thus agrees with observations of TS and DS. The 
shape of the spectrum is then fixed, and the scale parameters e 
and v, remain to be specified. The form 

e(z) = (eo/No)N(z) (33) 

with eo = 3 J/m3 agreed with the WKB scaling (14) and (within 
a factor of 3) with most observed internal wave rms velocities 
(•, 5 cm/s) and rms vertical displacements (•, 7 m). The mean 
square quantities derived from the spectrum are 

<•r2> = «(eo/No) N- 
(34) 

<u,2> = <u22> = •(eo/No)N(z) 

Integration of (33) yields be 0 for the energy per unit surface 
area, amounting to 4 x 103 J/m 2. 

Information on the wave number scale was taken from the 
moored coherence 

Me(r, co) = d2 A(2)Jo(2•,rh) cos (2fi,Az) (35) 
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Fig. 10. Spectra and cross spectra of isotherm depth series. Separa- 
tion of upper and lower isotherm is about 100 m FCairns, 1975]. 

which reduces to the moored horizontal coherence for pure 
horizontal separation (Az - 0) and to the moored vertical co- 
herence (MVC) for pure vertical separation (rh = 0). In agree- 
ment with Cairn's [1975] observation (Figure 10) the moored 
vertical coherence is independent of frequency for co << N. Esti- 
mates of v, may conveniently be obtained independently from 
moored vertical and horizontal coherences using relations be- 
tween v, and the distance at which the coherences as functions 
of separation drop below a certain value. Such relations take a 
simple form if the wave number scale (%,/•,, or v,) is replaced 
by the bandwidth of the spectral density, which unlike the scale 
is a parameter characterizing the spectrum independent of its 
shape. The wave number bandwidth is suitably defined by 
[Mfi'ller et al., 1978] 

I;o © ]2/I0øø J?•(co) = dJ? E(J?, co) dJ? E2(j?, co) (36) 

with the interpretation that a box of width /• and height 
• E 2 dfl/• E dfl (average energy) has the same energy as E(/•, co). 
For the model (32) one finds 

/1• =/?,[2(t - 1)]/(t - 1)2 

The MVC drops below « at a separation Az•/2 ~ 2//• rather 
independently of the shape of A(;L). Observations and the slope 

t = 2.5 then yield values for the mode number bandwidth ¾e -'- 
•ebNo/(•tN) of about 10. 

Other measurements which did not directly contribute to the 
construction of the model provided useful checks. Slight modi- 
fications were proposed by Bell [1976] concerning the shape of 
the inertial peak and by Cairns and Williams [ 1976] concerning 
the slope of the wave number density at high wave numbers 
(they suggest t = 2). The wave number distribution (32a) was 
then replaced by 

A(;t) = (2/•t)(1 + ;t2) - • (37) 

because of analytical convenience [e.g., Desaubies, 1976]. There 
is an obvious necessity for a spectral cutoff at high wave num- 
bers to avoid an infinite mean shear in the model. Experimental 
evidence is masked by the presence of fine structure (see section 
4). Another modification concerns the behavior of the spectrum 
in the subbuoyancy range. At frequencies very close to the local 
turning point co = N(z), moored spectra and coherences show a 
slightly increased level above the expected shape (see, for exam- 
ple, Figures 9 and 10). As demonstrated by Desaubies [1975] 
with solutions in terms of Airy functions this feature can be 
attributed to local phase coupling between incident and reflec- 
ted waves near the local buoyancy frequency: here the waves 
interfere constructively and increase energy and coherence (see 
also Munk [1980]). 

This model comprises a considerable amount of internal 
wave observations, and being able to explain their basic charac- 
teristics, it points toward some universality of the spectrum. It 
has already been noted by Garrett and Munk [1972a] that 
measurements of internal waves may be contaminated by Dop- 
pler shift, by small-scale turbulence, by mooring motion, and in 
particular by current and temperature fine structure, which has 
been studied extensively [Phillips, 1971; Garrett and Munk, 
1971; McKean, 1974]. While the use of an inhomogeneous data 
set and the underlying assumption that all observations may be 
described by the same universal model allows the determi- 
nation of the mean wave field and its geophysical variability, 
the precise local structure and contamination of the measure- 
ments cannot be determined. One of the major efforts to over- 
come this shortcoming of the Garrett and Munk model was the 
internal wave experiment IWEX performed in 1973 in the 
Sargasso Sea. 

The IWEX experiment consisted of a three-dimensional 
array of 20 current meter and temperature sensors (to estimate 
vertical velocity) deployed in the main thermocline with a 
spatial resolution ranging from 2 m to about 500 m. The array 
was supported by an extremely stable three-lagged mooring 
with the form of a tetrahedron (Figure 12). A detailed descrip- 
tion of the experiment, the data, and the estimation of cross 
spectra has been given by Briscoe [1975b]; the modeling of the 
spectrum was performed by M iiller, Olbers, and Willebrand 
and presented in a series of papers [Olbers et al., 1976; Wille- 
brand et al., 1977; Miiller et al., 1978]. Some features of the 
IWEX data set will be presented below to illustrate the ade- 
quacy and limitations of the conceptions of the Garrett and 
Munk model about the deep-ocean wave field. A survey of 
some results of more rigorous modeling follows in the next 
section. 

The discussion will deal with some relations among the 
components of the moored cross-spectra matrix (23). These 
relations take a simpler form by transforming from the Car- 
tesian current components (u•, u2) to the rotary representation 

1 

u_+ = 2-i7 • (ua _ iu2) (38) 
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__ K.•+f•m•/N 

Fig. 11. The Garrett and Munk model for the energy spectrum of internal waves. The upper display is E(•,/•) in wave 
number space, the middle and bottom displays are E(•, to) and E(/•, to), respectively. Coordinates are dimensionless and 
plotted logarithmically, so that plane surfaces represent power laws, as designated. The moored spectrum MS is a projection 
on a vertical plane, as shown in the top right figure, and the towed spectrum TS and dropped spectrum DS are displayed 
similarly. Coherences (MHC, TLC, .-.) are related to various bandwidths, as indicated [Garrett and Munk, 1975]. (In these 
figures, • is denoted by K and/• by rn.) 
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Fig. 12. Profile of buoyancy frequency N(z) at the IWEX site. The 
geometry of the IWEX array is schematically indicated. Points are 
instrument positions. Near the apex, 10 more instruments (not shown) 
are located [Miiller et al., 1978]. 
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Fig. 13. Coherence and phases between different components of an 
instrument at 730 m depth [Miiller et al., 1978]. 

The notation of moored rotary spectra will be 

A.,(r, co)= P.,(r, co)- iQ.,(r, 

1 dr (u*(x, t)u(x + r; t + z))e- 
and rotary coherences and phases are defined by 

(39a) 

7•.(r, co) exp [i&•.(r, co)] = A.v(r, co)/{P..(0, co)Pv.(0, co)}'/2 
(39b) 

with #, v = +, - and 3 (occasionally, the vertical displacement 
will be used). The internal wave model of the moored rotary 
spectral matrix has the same structure as the Cartesian one. 
Only the Cartesian polarization vectors must be replaced by .6 
the rotary polarizations. 

One of the results of the IWEX analysis was that the Garrett 
and Munk model in fact is basically adequate but gives a rather 
smoothed picture of the wave field. The local spectrum shows a .2 
great deal of variability in wave number-frequency space 
which is not of statistical origin but must have dynamical 0 
reasons. Figure 13 displays the result of a simple test for iso- 
tropy and symmetry (both are properties of the Garrett and 
Munk model) of the wave field. As a property of the cross- '$ 
spectral matrix (23) of internal waves the coherences 7 + 3 and 
7- 3 vanish at zero separation in the case of symmetry, and 7 + - .6 
additionally vanishes in the case of isotropy. Indeed, in the 
wave continuum (to > M2, the tidal frequency) all three coher- .t, 
ences almost everywhere lie below the 95% confidence limit of 
zero true coherence. An isotropic and symmetric wave field is 
here consistent with the data. At low frequencies, however, in 
particular at the semidiurnal tide M2, isotropy and symmetry 
must be rejected. A dominance of downward propagating 
energy was found. Figure 14 displays the variability of the 
mode number bandwidth in the frequency domain. Typical 
values for the 'half coherence separation' Az•/2 range from 70 to 
140 m for frequencies in the continuum and the inertial fre- 

quency, but the tide decreases much more slowly with Az•/2 
500 m. Estimates of Ve lie between 10 and 20 in the continuum 
and at 3 for the tide. Horizontal coherences lead to consistent 

results. Also, the wave number slope t shows some variability 
with frequency which, however, is here of the same magnitude 
as the statistical uncertainty. Moored data are not the appro- 
priate tool for determining t. The procedure is rather indirect 
and is based on the asymptotic properties of cosine and Hankel 
transformations which map the wave number spectrum onto 

SLANT 

- HORIZONTAL 

lO lOO lOOO 

SEPARATION [M] 
Fig. 14. Slant and horizontal displacement coherences for various 

frequencies versus separation:inertial (open circles); tidal (open trian- 
gles); 5.0 hours (solid triangles); 2.0 hours (open squares); 0.67 hours 
(solid circles) [Miiller et al., 1978]. 
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Fig. 15. Internal wave energy tests. (a) Observed ratio P+ +/P__ 
of average rotary spectra and theoretical curve. (b) Observed ratio 
P<</(P + + + P_ _) and theoretical curve [Miiller et al., 1978]. 

the moored coherence (see (35)). If the spectrum behaves as 
for s > s0, then the moored horizontal coherence becomes 

MHC(rh) = 1 -const (s0rh) t- • + O[(s0r•) •'] (40) 

for horizontal separations r• >> So-•. The slope t determined 
from (40) scatters between 2 and 3, which covers the range 
obtained from other experiments. 

Further disagreements between the IWEX data and the Gar- 
rett and Munk model are of a more fundamental nature: the 

observed fluctuations show small but systematic deviations 
from internal wave kinematics. 

Consider first the question of whether the observed fluctu- 
ations are free linear internal waves at all. The simplest way to 
an answer comes from relations which the autospectra P+ +, 
P_ _, and P• of the rotary components and vertical displace- 
ment must satisfy in the case of internal waves [Fofonoff, 1969]. 
Observed and theoretical ratios (which may be derived from 
(23)) are shown in Figure 15 for frequencies in the internal wave 
range. Regarding the ratio P+ +/P__ (Figure 15a), the data 

appear to be consistent with internal waves in the continuum. 
The violation at to-f can be ascribed to the finite frequency 
resolution of the spectral estimation, while the violation at 
to = Me points toward a forced or deterministic character of 
the tidal waves. The observed ratio «N•'P•/(P++ + P__) of 
potential to horizontal kinetic energy (Figure 15b) lies below 
the theoretical value almost everywhere in the continuum, and 
the ratio P + +/P__ of counterclockwise to clockwise rotating 
energy lies almost everywhere above. This systematic disparity 
from internal wave kinematics points toward a complex con- 
tamination process. 

The coherences also reveal systematic discrepancies. Figure 
16 displays some coherences of the same velocity components 
for slant and horizontal separations. The coherences show a 
similar monotonic decrease with frequency, but the behavior of 
horizontal currents and vertical displacements is strikingly dif- 
ferent. According to internal wave theory (i.e., the model of the 
moored cross-spectral matrix) all these coherences should be 
equal: 7++ = 7--= •33, but the last of these equalitics is 
significantly violated. Further details of this coherence dispar- 
ity may be inferred from Figure 17, showing its spatial struc- 
ture. Only the horizontal coherences of displacements decrease 
smoothly; the others show a two-scale behavior: within a few 
meters they drop rapidly, and for larger separations they de- 
crease similarly to •33 but at a lower level. The simplest model 
would ascribe the horizontal behavior of •33 to pure internal 
waves. The other three coherences must then be contaminated 

by nonwave fluctuations with smaller correlation scales. Since 
the drop of coherence is larger for slant than for horizontal 
separations, the contamination is of a rather complex nature. 
The simplest model bearing physical relevance and leading to 

tO 

,, ,I,llihl, ,, ,,!,Ill ,i I I1'1,,, I'l'11111111iillllm T 
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Fig. 16. Obscrvcd cohcrcnccs for a slant and a horizontal scpara- 

tion: 733 (solid circles); 7-- (open circles); 7+ + (triangles). The shaded 
area indicates the 95% confidence limit for zero coherence. Error bars 

are rms deviations [Miiller et al., 1978]. 
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Fig. 17. Observed (a) slant and (b) horizontal coherence for a period 
of 1.7 hours versus separation [Mfiller et al., 1978]. 

completely consistent data interpretation involves the presence 
of at least three contaminating fields superimposed on the wave 
fluctuations. These ideas are discussed in the following para- 
graphs. 

Since vertical displacements are estimated from temperature 
measurements, the disparity of slant and horizontal displace- 
ment coherence is likely to be explained by layered temperature 
fine structure with small vertical correlation scale (of the order 
of 2 m) and large (compared to the array dimensions) horizon- 
tal correlation scale. Rigorous modeling indeed leads to com- 
plete agreement of the fine structure parameters with the con- 
tamination model of McKean [1974]. Slant and horizontal 
current coherences are affected differently, and the model pro- 
poses a separation of the contaminating agent into a isotropic 
current field with small correlation scale (less than the smallest 
separation, • 7 m, actually used) and a layered current field 
with a correlation pattern similar to the temperature fine struc- 
ture. This separation allows the interpretation of at least one of 
these fields as being of a geophysical nature: the layered field 
may be associated with two-dimensional turbulence advected 
by a mean current past the current meter. The frequency spec- 
trum obtained by inverse modeling (see section 4) is shown in 
Figure 29. The isotropic field may be instrumental noise as well 
as three-dimensional isotropic turbulence confined to homoge- 
neous layers. Neither interpretation is completely convincing: 
the nonwhite frequency dependence (see Figure 29) does not 
agree with simple conceptions of instrumental noise; isotropic 
turbulence would also cause temperature fluctuations, since the 
layers observed during IWEX are not completely homogeneous 
[Hayes et al., 1975]. Temperature fluctuations with corre- 
sponding magnitude should then contaminate also the dis- 
placement coherence at a rate which is not observed. 

Apart from some variability in the wave number-frequency 
domain the mean local IWEX spectrum essentially confirmed 
(at least for the continuum) the concept of a universal spectrum 
of deep-ocean internal waves. As Wunsch [1975a] pointed out, 
a universal isotropic and symmetric model gives no indication 
of sources or sinks of energy, 'almost all the physics are ruled 
out.' To gain insight into the dynamical reasons of the univer- 
sality, experimenters should look for deviations from this basic 
state. Observations of temporal and spatial variability of the 
internal wave spectrum will be considered in section 5. 

3.2. The Wave Field in the Upper Ocean 

A clear picture of upper ocean wave properties has only 
begun to emerge in recent years. Very few high-quality 
measurements have been made in the near-surface layers with 
appropriate space-time resolution. Basic results came from the 
temperature profiling data of Pinkel [1975], collected on the 
stable platform Flip, and from the line sensor measurements of 
Soviet scientists [e.g., Sabinin, 1973]; a survey has been given 
by Brekhovskikh et al. [1975]. Whereas low-frequency waves 
seem to agree with the deep-ocean model, both studies suggest 
that the high-frequency wave field is more intermittent and 
anisotropic (the waves occur in distinct groups) and has a 
simpler modal structure. With higher frequency the first mode 
becomes increasingly prominent. An explanation of these fea- 
tures must include both kinematical and dynamical reasons. 
Waves of high frequency are trapped in the thin seasonal 
pycnocline, in which a standing mode structure can be es- 
tablished much more easily than in the diffuse permanent pyc- 
nocline. They are in a region of large shear and close to the 
surface forcing (atmospheric fields and surface waves). The 
waveguide and the forcing function have substantial space and 
time variations. Trapping near the surface also may exclude the 
higher-frequency waves from processes that are responsible for 
the universal form of the deep-ocean spectrum. 

The internal wave experiment performed in 1974 during the 
GATE field program provided a unique substantiation of the 
above description of the wave structure in the upper ocean. The 
experiment consisted of an array of current meters and thermo- 
meters covering horizontal scales from a few meters to about 
500 m and vertical scales from a few meters down to about 200 

m beneath the surface. A summary of the experiment and a 
discussion of the high-frequency wave field have been given by 
Kiise and Siedler [1980]. The variance-conserving plot of the 
energy spectrum (Figure 18) shows the dominance of waves in 
three frequency bands: near-inertial waves, tidal waves, and 
high-frequency waves near 3 cph. The strong deviation of the 
spectral shape from the deep-ocean universal form is obvious. 
The peak at 3 cph is far below the local stability frequency 
(• 10 cph) and thus cannot be attributed to constructive inter- 
ference of waves close to the turning point visible in deep-ocean 
spectra. These waves of about 20-min period also appear in the 
isopycnal displacements (Figure 1) measured in the vicinity of 
the mooring. Kiise and Clarke [1978] argue that these high- 
frequency waves trapped in the upper pycnocline are a conse- 
quence of the particular stability profile described by a rather 
narrow pycnocline overlying a thick but weaker stratified layer. 
In such a waveguide there will appear an accumulation of 
energy in the pycnocline at the trapped frequencies relative to 
the 'penetrating' frequencies if the energy input at the surface is 
smooth in the frequency domain. These trapped waves are 
highly anisotropic and nonstationary. The latter property is 
displayed in Figure 19. The first-mode structure has been in- 
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Fig. 18. Variance-preserving presentation of total internal wave 
energy of the GATE spectrum (curve a), and theoretical Garrett-Munk 
spectrum (curve b) with energy in the frequency band 0.1-1 cph equal 
to that observed in the GATE spectrum (curve a) I-Kh'se and Siedler, 
1980]. 

ferred from the spatial behavior of normalized displacement 
cospectra (Figure 20): there is some evidence of an oscillating 
behavior at higher frequencies which may be attributed to a 
peak in the wave number distribution at nonzero wave num- 
bers [cf. Miiller et al., 1978]. A reciprocal relation similar to 
that between bandwidth and coherence scale may be used to 
estimate the peak wave number. Results are inserted in the 
dispersion curves calculated from the actual N profile at the 
mooring site (Figure 21). This confirms the presence of first- 
mode waves with a typical wavelength of 1 km. 

Spectral modeling of upper ocean spectra in the spirit of 
Garrett and Munk is not yet far advanced. KGse and Clarke 
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Fig. 19. Variation of high-frequency peak in north component cur- 
rent at 59 m depth [Kiise and Siedler, 1980]. 
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Fig. 20. Normalized temperature cospectrum as a function of separa- 
tion for different frequencies [Kiise and Siedler, 1980]. 

[1978] presented a model of the superenergetic waves at high 
frequencies which is based on the peculiar response function of 
the stratification in the upper ocean as described above. Levine 
et al. [-1983] applied spectral modeling to temperature and 
velocity spectra from the Mixed Layer Experiment (MILE), 
which was performed in the northeast Pacific Ocean. The low- 
frequency part of the spectra (0.1 < co < 1.0 cph) could be 
successfully interpreted by a WKB model, whereas for the 
high-frequency shoulder in the frequency range 1.0 < co < 5.0 

z 

I00- 

kin 

i0- 

1 

1 MODE 

I ' I , i i , I 
0.1 cph 1 2 345 10 

FREQUENCY • 

Fig. 21. Dispersion relation of the first five modes. The triangles 
result from wavelength estimates (4 times the zero crossing distance) of 
normalized temperature cospectra in Figure 20 [Kiise and Siedler, 
1980]. 
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cph a modal picture was more appropriate. Again the first 
mode was predominant. Peters [1981, 1983] conceived a spec- 
tral model based on the shear modes computed from the actual 
shear current and stratification (c.f. Figure 8). A significant 
fraction of the observed anisotropy of the wave field could be 
attributed to the ambient shear. The hump at high frequencies, 
however, could only be modeled by a corresponding distortion 
in the wave number distribution. Peters thus concluded that the 

superenergetic waves are of dynamical origin and are not relat- 
ed to the shear current. Roth et al. [1981] attempted by a 
comparison of various upper ocean spectra to substantiate the 
idea that the stationary universal Garrett and Munk spectrum 
is still present in the upper ocean but masked by a variable 
spectral contribution generated at the surface. Such a concept 
of separating the spectrum into a locally generated part and a 
remotely generated part which is in a saturated state was 
successfully applied by Fu [1981] to near-inertial waves (see 
discussion below). 

3.3. Inertial Waves 

Inertial waves represent a major contribution to the kinetic 
energy of oceanic motions in the upper and the deep ocean (see, 
for example, Figure 5). Considerable experimental effort has 
been spent to establish their basic structure, namely, the clock- 
wise (in the northern hemisphere) rotation of the horizontal 
current vector with time, a dominant frequency which is slight- 
ly larger than the local inertial frequency [e.g., Day and Web- 
ster, 1965; Schott, 1971; Pollard, 1980], upward propagation of 
phase and thus downward energy flux [e.g., Sanford, 1975; 
Kundu, 1976; Leaman, 1976; Kiise and Olbers, 1980; Pollard, 
1980], and clockwise turning of the velocity vector with in- 
creasing depth [e.g., Kundu, 1976]. These features were also 
found in the IWEX spectrum [Miiller et al., 1978]. 

An extensive description of the spectral properties of inertial 
waves away from horizontal and vertical boundaries has re- 
cently been presented by Fu [1981]. This work uses data from 
Polymode arrays [U.S. Polymode Or•tanizin•t Committee, 1976], 
which provided an excellent data base for the study of inertial 
waves because of the large regional covering (subtropical to 
temperate latitudes in the western North Atlantic) and the long 
duration of the observations (at least 9 months at each mooring 
site). In most of the data there is a prominent peak at fre- 
quencies slightly exceeding f, but a universal frequency spec- 
trum close to f does not exist. The parameters characterizing 
the level and shape of the inertial peak vary substantially with 
latitude and environmental oceanic conditions. The peak 
height (measured by the ratio of the peak level to a power law 
extension from the higher frequencies in the internal wave 
band) shows large values close to potential sources of inertial 
waves (near the Mid-Atlantic ridge, at depths less than 2000 m, 
in the deep ocean over rough topography, and under the Gulf 
Stream) as compared to regions which are supposed to be 
dynamically inactive (the deep ocean over smooth topography). 
The bandwidth of the peak decreases with increasing latitude; 
the peak frequency seems to be inversely correlated to the peak 
height. The horizontal coherence scale decreases with depth, 
and the vertical coherence scale shows an opposite behavior. 
Further, the vertical structure of the wave field changes from 
downward energy propagation in the lower thermocline to 
standing wave properties in the deep water. 

Most of these findings could be modeled by a superposition 
of a remotely generated contribution and a locally generated 
contribution to the inertial peak. Waves which are generated 

closer to the equator and propagate poleward approach their 
turning latitudes to form here part of the inertial wave field. 
This global wave field is identified with the observations in 
dynamically inactive regions. A model based on latitudinal 
Airy solution [Munk and Phillips, 1968] and the frequency- 
wave number model of Garrett and Munk at lower latitudes is 

able to reproduce the main features of the global part: the 
magnitude of the peak height, the latitudinal dependence of the 
bandwidth, and the correlation of the blue shift with the height 
of the peak. Figure 22 gives an impression of the success of the 
model. The excess of inertial energy above the spectral level of 
the global model is interpreted as the result of the local forcing. 
This contribution then is responsible for the enhanced peaks 
and the downward propagation of energy in the observations 
above 2000 m. 

4. SEPARATION OF WAVES AND TURBULENCE 

A separation of oceanic motions into wavelike modes of 
motion and nonwavelike modes (generally named turbulence) 
turned out to be an extremely fruitful concept both from a 
descriptive and from a theoretical point of view. In a wave field, 
Fourier components in the wave number-frequency space 
(wave components) obey a dispersion relation, and therefore 
wavelike disturbances (and energy) propagate through the 
background medium relative to the mean flow with the appro- 
priate group velocity. In a turbulent flow there is no unique 
dispersion relation, and turbulent disturbances are an advected 
feature rather than a propagating one. Wave components inter- 
act in a weakly nonlinear way under the restriction of reso- 
nance, while in a turbulent flow all Fourier components are 
coupled and may interact strongly. This different behavior is a 
consequence of the relative importance of the nonlinear inertia 
terms in the governing equations of the motion: the notion of a 
wave implies an essentially linear phenomenon, and a turbulent 
flow is a nonlinear one. 

In practice, a distinction between internal waves and turbu- 
lence may be extremely difficult, since the transition between 
the wavelike regime and the turbulent regime is continuous and 
a wide range of graduations may occur in nature. The modes 
are coupled dynamically and modify each other. Further, both 
types of motion coexist in the physical space and therefore 
contribute to the signal recorded by a measuring device. They 
also overlap in the Fourier space-time domain either through 
their kinematics or because of aliasing, Doppler shifting, or 
dynamical coupling. Spectral analysis is thus not sufficient for 
separating the different modes of motion. Besides contributions 
of geophysical origin a measured signal may also contain in- 
strumental noise. To identify internal waves in the ocean there- 
fore requires carefully designed experiments and elaborate tech- 
niques of data interpretation. 

4.1. Towed and Dropped Measurements 

To decide whether towed or dropped data contain contri- 
butions from internal waves is a difficult taks. A very plausible 
conception was exploited by Woods and Minnett [1979] to 
filter out internal waves from Batfish data: assuming that the 
waves have only negligible displacements with very small verti- 
cal wavelengths, the variability in the separation of two closely 
neighboring density surfaces must essentially be due to non- 
wave motion (though each individual isopycnal may be undu- 
lated by the long waves). 

In recent years, considerable attention has been focused on 
the interrelation and separation of internal waves and fine 
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Fig. 23. Schematic temperature gradient spectra. These levels rep- 
resent spectra that have been averaged vertically over 100 m or more. 
Spectra averaged over shorter vertical intervals exhibit much more 
variation in the microstructure range [Gregg, 1977]. 

structure appearing in any continuous profile of temperature in 
the ocean. Fine structure may be due to the straining of an 
otherwise smooth profile To(z ) by the shear of internal waves 
with short vertical wavelengths [e.g., Garrett, 1973]. If the 
vertical displacements of internal waves are •(z), the actually 
observed profile would be 

T(z) = Tol-z - •(z')-I (41 a) 

where z' is implicitly given by 

z' + •(z') = z (4lb) 

This contribution to the structure at small scales is reversible. 

An irreversible contribution originates from internal wave 
breaking which mixes small fractions of the water column [e.g., 
Garrett and Munk, 1972b]. 

Gregg [1977] reported evidence for a change in the spectral 
slope of vertical temperature profiles at a scale of approxi- 
mately 10 m. A schematic spectrum of the temperature gradient 
is given in Figure 23. It is intriguing to ascribe the variance at 
wave numbers less than 0.1 cpm (where the slope is nearly -2) 
to internal waves and the variance at higher wave numbers 
(where the slope is about -3) to irreversible fine structure. 
Since the wave spectrum must roll off somewhere at high wave 
numbers faster than -3 to have a finite mean wave shear, the 
above interpretation is far from being rigorous. Indeed, Des- 
aubies and Gregg [1981] presented a model of reversible tem- 
perature fine structure down to scales of 2 m. The model is 
based on the nonlinear heat conservation equation (41) and a 
Gaussian wave field with a Garrett and Munk spectrum with 
wave number slope -2. The model reproduces remarkably 
well the skewed distribution of the observed temperature gradi- 
ents for scales larger than 2 m. The failure at smaller scales may 
be due to increasing contribution in the profiles from irrevers- 
ible processes. Another approach to identify wave-induced fine 
structure has been reported by Johnson et al. [19781, who used 
conservation of heat, salt, and (in situ) density in the form of 
(41) to determine from each of these profiles the corresponding 
displacements (the smooth equilibrium profiles were defined as 
suitable spatial averages). These are displayed together with 
their differences in Figure 24. The striking similarity above 230 
m supports the concept of wave straining; below, significant 
differences occur which must be attributed to irreversible effects 

(the spikes in the profiles at 275 m are due to a data gap). 
Spectra of velocity which cover such a broad wave number 
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Fig. 24. Displacement profiles from temperature, salinity, and den- 
sity profiles [Johnson et al., 1978]. 

range as temperature spectra are difficult to obtain. Recently, 
Gargett et al. [1981] have put together a composite velocity 
shear spectrum from three different velocity profilers (Figure 
25). The similarity with the temperature gradient spectrum in 
Figure 23 is striking. Transition wave numbers as well as slopes 
agree remarkably. Still, a separation into waves and turbulence 
according to these transitions is overly simplistic as explained 
above. 

4.2. Moored Measurements 

A unique identification of internal waves can only be 
achieved if data allow verification (direct or indirect) of the 
dispersion relation. Measurements with moored arrays are 
suited to this purpose. Spectral analysis of moored data nat- 
urally filters out much of the nonwave energy because internal 
waves only exist in a well-defined frequency range (forgetting 
about Doppler shift). But the analysis of IWEX showed that 
even spectra of moored data contain significant contributions 
from other modes of motion. Certainly, the somewhat qualitat- 
ive arguments about the energy and coherence disparities given 
in the last section of the basis of a tiny percentage of the data set 
need to be substantiated by techniques which allow a consistent 
and concise interpretation of all data. In general, this poses 

X.-- 100m 10m lm 10cm lcm 

_ 

o 

-5 

-6 

Iogk(cpm} 

Fig. 25. Schematic vertical wave number spectrum of vertical veloci- 
ty shear I-Gargett et al., 1981 ]. 
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95% confidence 
ettipsoid 

y 

Fig. 26. Schematic graph of data, model point, and model con- 
straints in cross-spectral space [Miiller et al., 1978]. 

computational problems for the large amount of data involved 
in geophysical experiments. Two methods have shown some 
success in testing for the presence of a particular mode of 
motion in field data and possibly extracting the corresponding 
spectral energy. Consistency tests provide a tool to test a gener- 
al hypothesis concerning the kinematical structure of the ob- 
served fluctuations. Model fitting by a least squares '•'•' ;•" 
is used to construct a parameterized model for the observa- 
tions. These techniques will be described and illustrated with 
IWEX results. 

The setup of the techniques is displayed in Figure 26. A data 
set (in our case the set of all cross spectra) consisting of data Ym 
(rn= 1, "', M) may be regarded as a point in an M- 
dimensional space embedded in its (say) 95% confidence 
region. A model point (9•, -.., •s•) computed by some sort of 
algorithm will be accepted as being consistent with the data if 
both points coincide within the confidence limits. An appropri- 
ate statistic is the squared distance 

•2__ Z(ym_ •)Wmn(Yn_ •n) (42) 
m,tl 

where W is a weight matrix (or metric) in the data space. In 
practice, the data are Gaussian, and •2 follows a Z 2 distribution 
with degrees of freedom depending upon the choice of the 
metric Wren. Following the maximum likelihood principle, this 
should be the inverse data covariance matrix. This is impracti- 
cal because of data correlations or large M. Another choice is 
discussed by Miiller et al. [1978] and Willebrand et al. [1977]. 
The rejection (or acceptance) of a model is then reduced to a 
simple Z: test. 

The algorithm for computing a model point may require 
major numerical evaluations as in the case of the internal wave 
model (23) for the moored cross spectra. Before applying the 
above Z: test to such a model one should look for tests which 
do not depend on the specific value of the data point but rather 
on the kinematical structure of the model. For isotropic turbu- 
lence, for example, there must be equality of the autospectra of 
the three current components. Kinematical relations between 
potential and kinetic energy of internal waves or between the 
rotary coherences have been mentioned in the last section. A 
complete set of such consistency relations for vertically pro- 
gressive or modal internal waves has been worked out by 
Miiller and Siedler [1976]. Consistency relations can formally 
be written as linear constraints 

• LrmY m = 0 (r = 1,.", R) (43) 
m 

indicating a restriction of the model on an R-dimensional hy- 
perplane in the data space (this restriction may be quite strong: 
for example, an isotropic and symmetric field of vertically 
progressive internal waves must satisfy R = 854 relations 
among the M = 1444 cross spectra which were used in the 
analysis). Obviously, the model must be rejected if this hyper- 
plane does not intersect the confidence region. A suitable statis- 
tic is the squared minimum distance Emin 2 between the data 
point and the hyperplane, which follows a Z: distribution with 
R degrees of freedom. The distance e'• is independent of a 
specific model value, and thus the consistency tests are compu- 
tationally simple. Examples of consistency tests applied to the 
IWEX data are given in Figure 27. The statistic Emin 2 (normal- 
ized by its expectation value) is displayed versus frequency. The 
hatched line is the 95% confidence limit. 

Consider first the assumptions of the Garrett and Munk 
model: horizontal homogeneity and isotropy, vertical sym- 
metry, vertically progressive internal waves, and WKB scaling. 
Figure 27a demonstrates that these assumptions cannot be 
accepted. Strong rejections occur at the tidal and at high fre- 
quencies. The model must also be rejected at medium fre- 
quencies, since the statistic does not scatter randomly about the 
expectation value. Tests of particular properties of the model 
are displayed in the next three figures. Homogeneity and WKB 
scaling (with the actual N profile) may be accepted with the 
exception of high frequencies. This presumably is due to the 
proximity of the turning point. Horizontal isotropy (and verti- 
cal symmetry, which is not shown) can be accepted at medium 
frequencies. The field is strongly anisotropic and asymmetric at 
low frequencies and slightly so at high frequencies. The consist- 
ency relations for propagating waves are strongly violated at 
the tidal and at high frequencies and slightly so at medium 
frequencies. The violation is mainly due to the energy and 
coherence disparities demonstrated in the examples in Figures 
15 and 16. This conclusion may be drawn from Figure 27e, 
which shows only those tests for propagating waves which 
discriminate between these and standing modes. Here the dis- 
parities do not enter because standing modes need not satisfy 
the corresponding tests. The remaining (discriminating) tests 
are better satisfied by the modes, particularly at high fre- 
quencies. To conclude, however, that modes provide an ade- 
quate model is overhasty (this shows the limitations of tests 
which constrain only a fraction of the data), since a modal 
model cannot remove the energy and coherence disparities and 
simultaneously reproduce the observed coherence scales: the 
drop of the vertical coherence within about 100 m requires 
excitaton of many modes, but such a modal field must satisfy 
the energy and coherence tests on the average (not strictly, but 
a systematic violation cannot occur). 

Internal waves, either propagating or standing modes, will be 
unable to model the observations consistently because they 
cannot cover the disparities. It is informative to compare the 
pure propagating wave model (Figure 27d) with the contami- 
nation model inferred by simple reasoning from the disparity 
structure (see section 3). Addition of temperature fine structure 
and the layered and isotropic turbulence contributions to the 
waves still leaves a considerable amount of constraints among 
the data (there are 224 relations among the 1444 cross spectra). 
Figure 27fshows that this wave turbulence model may provide 
a consistent description (except for turning point problems). 

It must be remembered that consistency tests check only 
some specific aspects of the data and that there are other 
(untested) features which decide whether or not the model point 
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Fig. 27. Consistency tests for the model classes indicated. The normalized statistic /•min 2 is displayed versus frequency 
(notice the different ordinate scales). If the value exceeds the 95% confidence limit (hatched line), the corresponding model is 
rejected. Values at the inertial frequency are not always reliable because of finite frequency resolution [Mfi'lleret al., 1978]. 
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Fig. 28. Parameters of IWEX model versus frequency. Solid curves indicate parameterizations of frequency dependence. 
The values proposed by Garrett and Munk 1-1972a, 1975] and Cairns and Williams [1976] are indicated on the right vertical 
axis (they apply to the entire frequency range). The total wave energy and energy asymmetry are scaled by the frequency 
distribution B(o)) [Miiller et al., 1978]. 

on the constraining hyperplane may be chosen within the confi- 
dence region. The modeling is conveniently performed by a 
least squares fit procedure. The model is parameterized in terms 
of parameters x•, ..., Xp (generally P << M). The model point 
which minimizes the squared distance e2(x•, '", Xp) is the one 
that most likely lies within the confidence region of the data 
point. Because the parameterization may be highly nonlinear 
(for example, as the dependence of the Garrett and Munk 
model on V e and t), the condition e 2 (x], "', Xp) = min is 
conveniently solved by a linearized iteration procedure. The 
parameters, their variances, and correlations are then com- 
puted by linear matrix algebra. The results of the IWEX wave 
turbulence model are displayed in Figures 28 and 29. 

The conception and parameterization of the IWEX model 
were chosen to be slightly more general than the Garrett and 
Munk model. Asymmetry between upward (E ? ) and downward 
(E $ ) propagating spectral energy was incorporated as well as 
horizontal anisotropy. The shape of the wave number distribu- 
tion allows for a peak at a nonzero wave number. The panels of 
Figure 28 show the total energy E ? + E $ and the asymmetry 
E ? + E • (Figure 28a), both scaled by the frequency distribu- 
tion eB(oo) of the Garrett and Munk model with e = 4 x 103 j/m2; 
the equivalent mode number bandwidth Ve (Figure 28b); the 

slope t at high wave numbers (Figure 28c)' the mode number v t, 
of low wave number peak (Figure 28d); a peak shape parameter 
(for s - 1 the shape of the Garrett and Munk model (32) is 
recovered, for s - • the peak flattens to a plateau) (Figure 28e)' 
the dominant propagation direction &0 (Figure 28f); and the 
beamwidth A& of the horizontal directional distribution (Figure 
28g). In most respects the result confirms the model of Garrett 
and Munk displayed in Figure 11. Significant deviations occur 
mainly at low frequencies, in particular at the inertial frequency, 
the tide, and its harmonics, where the wave field is anisotropic 
and asymmetric (there is an excess of about 20% of downward 
propagating energy). 

The decontaminated wave spectra of displacement and hori- 
zontal kinetic energy are shown in Figure 29 together with the 
spectra of nonwave contributions. At high frequencies the tem- 
perature fine structure contamination agrees fairly well with a 

3 
theoretical model of McKean [1974] which predicts a -• 
decrease below the buoyancy frequency. The parameters deter- 
mining the level of this model spectrum have been taken from 
the fine structure analysis of Joyce and Desaubies [1977] of 
IWEX data. The difficulty in interpreting the current contami- 
nations has been discussed in section 3. The interpretation of 
the three-dimensional contamination as small-scale, over- 
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Fig. 29. Partition of the observed spectra into internal waves and contamination. (a) The displacement spectra of the 
internal wave part and the fine structure part. The model of McKean [1974] is indicated by the straight line. (b) The spectra 
of horizontal kinetic energy of the internal wave part, the layered and isotropic turbulent contributions [Mfiller et al., 1978]. 

turning turbulence is not completely convincing. The two- 
dimensional field may be associated with flat lenses of two- 
dimensional turbulent motion. Both these contributions may 
not have been resolved at their natural frequencies but may 
rather have advected past the sensors by the mean current and 
wave field itself. Moreover, it cannot be excluded that the 
contamination pattern is caused by a single field with a more 
complicated correlation pattern. 

Though there are difficulties in interpreting the result in 
physical terms, the separation of the observations into wave 
and nonwave contributions has been achieved within the statis- 

tical uncertainties. Figure 30 displays the X 2 test for the final 
model: except at the tide and frequencies near the turning point 
the model and the data coincide within the 95% confidence 

limit. The similarity of this modeling result, which incorporates 
all data, with the consistency test (Figure 27f) of the wave 
turbulence model is obvious. 

5. DYNAMICAL MODELS 

For many applications, such as passive advection of temper- 
ature fine structure by internal waves, it is sufficient to know 
the state of the wave field. But the waves also actively take part 
in forming oceanic structures by exchanging energy and mo- 
mentum with other modes of motion. Besides the phenomen- 
ology of the wave state given in section 3 a comprehensive 
description of internal waves in the ocean therefore must in- 
clude a treatment of their dynamical role. This is a major 
oceanographic problem, since the waves interact with many 
other fields (mesoscale and small-scale turbulence, atmospheric 
turbulence, surface waves, tides, bottom topography, etc.) with 
comparable strength and by a wide variety of physical mecha- 

nisms. From the point of view of the wave field the ultimate 
goal is the dynamical balance of the spectrum in terms of 
generation of energy by external fields, internal transfer of 
energy within the wave field, and dissipation. The first model of 
the energy balance [Olbers, 1974; Miiller and Olbers, 1975] was 
based on the early version of the wave spectrum [Garrett and 
Munk, 1972a]. The spectrum was explained as a balance of 
wave-mean flow interaction, wave-wave interaction, and wave 
breaking, but this balance did not entirely survive further ex- 
perimental and theoretical studies. Kiise and Tang [1976] sug- 
gested that the spectrum is balanced by generation of waves by 
wind stress arid dissipation by friction in the bottom boundary 

2 
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Fig. 30. Consistency of the IWEX model' normali•zed distance 

(circles) between data and model point with 95% confidence limit 
(crosses) versus frequency [Mfiller et al., 1978]. 
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1592 OLBERS: MODELS OF THE OCEANIC INTERNAL WAVE FIELD 

layer. But this simple model (though being able to reproduce 
spectra and coherences) also lacks experimental support. 

Bell [1975a] proposed that topographic generation of inter- 
nal tides and subsequent spreading of tidal energy across the 
wave continuum by resonant coupling might be responsible for 
the wave field in the main thermocline. This model could not be 

supported by recent detailed analysis of the wave-tidal coupling 
[Olbers and Pomphrey, 1981]. The evolution of the Garrett and 
Munk spectrum under the influence of resonant wave-wave 
coupling has been extensively studied by McComas and Miiller 
[ 198 la]. Their results, which explain many of the details of the 
spectral shape, will be presented below. Fu's [1981] conception 
of the balance of the inertial peak has been discussed in section 
3.3. 

Though many interaction processes which affect the wave 
field have been studied with great care, a complete picture of 
the spectral balance could not be drawn. Rather, extensive 
investigations in recent years showed that almost no process 
which was evaluated in detail could be ruled out from possibly 
taking part in the balance. Thus simple-minded conceptions of 
the overall balance were refuted, but new conceptions could not 
yet be introduced. This will surely be attempted in the next few 
years, and the work of McComas and Miiller seems to show the 
direction. This section reviews some of the basic links which 

such a model must include. 

5.1. Observational Evidence 

of Dynamical Relations 

The energy level of deep-sea internal waves varies only very 
little: a factor of 2-4 as between IWEX and the Garrett and 

Munk model (with total energy 4 x 103 J/m 2) is typical. The 
energy in the surface wave field can change by a factor of 103 
between periods of calm and stormy weather. A relation to the 
wind as driving agent is quite obvious, and a phenomenology 
involving wave height and fetch and duration of the wind can 
be found by rather crude observations even if the generation 
mechanism remains unknown (see, for example, Phillips 
[1971]). In view of the universal character of the deep-sea wave 
spectrum and the large number of external fields interacting 
with the internal wave field it seems difficult to establish such a 

phenomenology in this case. Indeed, the search by Wunsch 
[1976] and Wunsch and Webb [1979] for deviations from the 
canonical wave spectrum was only moderately successful. 
These authors investigated the spectral level and slope and the 
isotropy at medium frequencies of moored measurements in the 
North Atlantic, the Mediterranean, and the equatorial Indian 
Ocean. Significant increases of the energy level (see Figure 31) 
and anisotropy of the spectra were observed near pronounced 
topographic features (Muir Seamount, canyons), which, how- 
ever, are lost very rapidly with increasing distance from these 
regions. If these regions are interpreted as source regions, the 
dynamics controlling and restoring the spectral shape must be 
very efficient. But the identification of topographic features as a 
source is not imperative. As shown by Eriksen [1982], linear 
inviscid theory of wave reflection can account for many of the 
observations close to a sloping bottom. Indeed, from (6c), (12), 
and (13) we find that an incident wave with total energy Ei and 
vertical wave number k3 is reflected into a wave with wave 
number 13 and total energy Er= Eil3/k 3 ,.• Ei/(LO2--LOs2), 
where % is the critical frequency (12b) associated with the 
bottom slope. The spectrum of the local energy density will 
thus be enhanced in the vicinity of the bottom, and as Eriksen 
also derives, strong anisotropy will develop by the reflection 
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Fig. 31. Spectra of horizontal kinetic energy at 10, 100, and 200 m 
above the bottom [Eriksen, 1982]. 

process. As is apparent in Figure 31, the perturbation of the 
spectrum disappears within a few hundred meters, presumably 
due to redistribution by nonlinear wave interactions and fric- 
tional dissipation. If this is true, topographic features would be 
a sink for wave energy and a source for mixing rather than an 
energy source. 

Below the Gulf Stream and the equator, Wunsch and Webb 
[1979] found a reduction of the coherence scales which may be 
due to the wave number structure of the spectrum but may also 
be explained by increased fine structure. Other obvious devi- 
ations could not be detected; in particular, no unique relation- 
ships were found between the spectral level and shape and tidal 
or inertial energy. Correlations in the time series of wave 
energy, the vertical shear of the mean current, and the Cox 
number (ratio of the variance of the microstructure temperature 
gradient to the squared mean temperature gradient) have been 
reported by Frankignoul and Joyce [1979], using the very short 
but highly accurate IWEX data (Figure 32). It is tempting to 
conclude that this result is an indication of local wave-mean 

flow interaction and wave breaking which produces micro- 
structure. The authors are rather reserved with this speculation 
because of large statistical uncertainties. Microstructure ac- 
tivity may also be related directly to the eddy field, as Hogg et 
al. [1978] found near Bermuda. An extensive experimental 
search for empirical relations between the mean shear and the 
momentum flux of the wave field [Frankignoul, 1947b, 1976; 
Frankignoul and Joyce, 1979; Ruddick and Joyce, 1979] was 
devoted to the verification of Miiller's [1974, 1976, 1977] con- 
cept of wave-induced viscosities, which will be discussed later. 

Briscoe [1983] searched for correlations between high- 
frequency wave energy and various forcing candidates. Inte- 
grating the high-frequency energy over frequency (above the 
tidal frequency) and depth (over the upper 1500 m), this bulk 
measure of internal wave energy showed time variations of a 
few milliwatts per square meter. Correlations were found with 
the deep near-inertial energy with a lag of about 2 days, which 
makes a transfer of energy from high to low frequencies plaus- 
ible. This confirms the theoretical prediction [Olbers, 1974, 
1976; McComas and Bretherton, 1977, section 5.2.3] that low 
frequencies in the deep ocean may draw energy from intermedi- 
ate frequencies by nonlinear wave coupling. Briscoe also pre- 
sents correspondences of the time rate of change of the bulk 
high-frequency energy with the wind energy and large-scale 
horizontal shear and gives rough estimates in favor of a balance 
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Fig. 32. Time behavior of square mean vertical shear (bottom 
panels), total energy in the total and continum bands (middle panels), 
and Cox number (heavy curve in the top panels) and normalized Cox 
number (light curve in the top panels) at 731 m (left) and 1023 m (right). 
The arrow indicates a period of observed large vertical shear in the top 
of the thermocline [Frankignoul and Joyce, 1979]. 

in which the high-frequency energy is generated by the wind 
(via surface waves?) and large-scale shear and is dissipated by 
energy transfer to near-inertial waves. 

The relation of the upper ocean wave field to surface forcing 
could be established at low frequencies. Evidence for wind- 
driven near-inertial waves in the upper thermocline has been 
reported by, for example, Kiise and Olbers [1980] and Weller 
[1981]. Correlations between the local wind and inertial cur- 
rents down to depths of about 200 m were found. The enhance- 
ment of the inertial peak in spectra above 2000 m with respect 
to the global inertial wave field [Fu, 1981] was already men- 
tioned above. To interpret this as the consequence of surface 
forcing seems plausible, in particular in view of the overwhelm- 
ing evidence of the downward direction energy propagation in 
the inertial band. 

Estimates of the energy flux at near-inertial frequencies by 
different authors agree roughly within an order of magnitude. 
Kundu [1976] reports a value of 1.5 x 10 -3 W/m 2 over the 
continental shelf; Perkins and Van Leer [1977] and Kiise and 
Olbers [1980] get values in the range (0.2-0.7) x 10- 3 W/m 2 in 
the near-surface equatorial ocean. In the main thermocline of 
the Sargasso Sea, Leaman [1976] obtains (0.2-0.6)x 10 -3 
W/m 2, whereas the IWEX parameterization of Miiller et al. 
[1978] yields 3 x 10 -3 W/m2._In the bottom boundary layer, 
D'Asaro [1982] found values of (0.1-0.35) x 10 -3 W/m 2 for 
the upward and downward fluxes in the clockwise near-inertial 
energy. In most cases the downward flux slightly exceeds the 
upward flux, resulting in a dissipation of wave energy of about 
10-5 W/m 2 in the benthie boundary layer. A systematic investi- 
gation of the inertial wave energy flux has been attempted by 
Frankignoul [1974a], searching correlations of the energy in 

different frequency bands and at different depths. Considering 
the ambiguity due to the simultaneous presence of propagation 
and interaction effects, the interpretation of Frankignoul's find- 
ings can only be tentative: his 'energy correspondences' also 
indicate downward flux at low frequencies and a reversal near 
the bottom. At higher frequencies the correspondences are 
rather entangled, and a unique picture could not be deduced. 

The identification of dominant sources or sinks of the wave 

energy by experimental means has so far been rather limited. 
The results confirm the existence of important dynamical pro- 
cesses. The data do, however, indicate that inertial waves may 
play an important role in the balance of the spectrum. If dissi- 
pation in the benthie boundary layer is negligible, as estimated 
by D'Asaro [ 1982] and also by Fu [ 1981], the energy of near- 
inertial waves or part of it may be transferred to the wave 
continuum as they travel from their source into the interior (the 
travel time of an inertial wave from the top to the bottom of the 
ocean is of the order of a few days). The observed downward 
flux of near-inertial energy of about 10 -3 W/m 2 and the con- 
tinuum energy of about 10 3 J/m 2 imply a time scale of 10 a s. 
Following this speculation the wave field would thus be dissi- 
pated and renewed within 10 days. A discussion of possible 
mechanisms follows. The theoretical treatment of these mecha- 

nisms is rather disperse, and a few a priori remarks will help to 
establish the present status of results. 

5.2. Theoretical Models of Dynamical Processes 

The dynamics of internal waves are governed by the conser- 
vation equations for momentum, salt, and mass, which in 
various stages of approximation are discussed in the literature 
[e.g., LeBlond and Mysak, 1978; Phillips, 1977]. External forc- 
ing fields enter through the boundary conditions (e.g., wind 
stress, atmospheric pressure, and buoyancy flux) or are intro- 
duced by suitable space-time averaging (e.g., large-scale mean 
flow, stationary thermal fine structure) or modal decomposition 
(e.g., surface gravity waves). Coupling between wave compo- 
nents arises from the nonlinearities in the equations. These may 
be reduced to an equation which describes the evolution of the 
wave amplitude a(k) in wave number space [Olbers, 1979], 

d 

d'• a(k) + if•o(k)a(k) = F[a, e; k] (44) 
where the source term derives from nonlinearities and external 

forcing fields denoted here by e. An evolution equation for the 
spectrum defined by (22) is readily obtained: 

d 

d'• (a(k)a*(k')) = Re (a*(k')F[a, e; k]) (45) 
Slow spatial variations (in the WKB sense) of the spectium may 
be included, defining E(k, x, t) such that E(k, x, t) d3•k is the total 
energy density at the position x in the wave number band d3k 
at k. For some purposes it is more convenient to consider the 
action spectrum 

A(k, x, t)= E(k, x, t)/f•o(k, x) (46) 

which may be loosely interpreted as a number density of waves 
in the (k, x) space. Its evolution is governed by a radiative 
transfer equation 

{c• t + :t. c• x + •. C•k}A(k, x, t)= S(k, x, t) (47a) 

which is the generalization of the action conservation (5) to a 
random wave field. Interaction processes described by the 
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1594 OLBERS.' MODELS OF THE OCEANIC INTERNAL WAVE FIELD 

right-hand side of (45) have been accounted for by the source 
function S(k, x, t), which determines the local change of action 
of the wave groups due to coupling between them and with 
external fields as they propagate along their rays. The resem- 
blance between an ensemble of interacting wave groups and an 
ensemble of interacting particles is apparent: indeed, the ray 
equations (2) and (3) are the Hamiltonian equations with a 
Hamiltonian f•(k, x, t) for a particle with generalized coordinate 
x, momentum k, and energy co. Action conservation is then 
conservation of particle number, and the radiative transfer 
equation is the analogue of transport equations governing the 
particle distribution function. 

The radiative transfer equation (47a) has to be augmented by 
radiation conditions at the surface and the bottom stating that 
the difference of upward and downward flux of action equals 
the flux through the boundary 

•3(kn, k3)A(kn, k3) + •3(kn, -k3)A(kn, -k3)= •p(k) (47b) 

where the boundary source function •b(k) is the net flux of 
action through the surface or the bottom of the ocean due to 
coupling with external fields. In a modal description, volume 
and boundary forcing appear both in the modal source func- 
tion SV(kh, xh, t) and in the radiation balance of the spectrum 
EV(k•, x•, t) of the vertical mode v. 

The framework of spectral evolution presented so far is not 
complete. As a consequence of nonlinearities in the equation of 
motion the source term (a*F[a]) involves triple correlations of 
the wave amplitudes. The spectral treatment of wave-wave 
interactions thus requires a closure hypothesis. This dilemma, 
which is fundamental in turbulence theory, is much reduced in 
the theory of random wave fields. Because of the dispersive 
nature of wave propagation, linear random wave fields are in a 
Gaussian state. That is a state in which wave amplitudes are 
mutually statistically independent, so that any wave correlation 
can be expressed in terms of the spectrum. Weakly nonlinear 
wave fields never depart much from a Gaussian state. it has 
been shown by Prigogine [1962] that in the limit of infinitely 
weak nonlinear coupling the correlations (a*F[a]) can be 
determined under the assumption that the lowest-order ampli- 
tudes are elements of a Gaussian ensemble. If, in addition, the 
free wave amplitudes are uncorrelated with external fields, the 
radiation balance (47) is a closed equation for the wave spec- 
trum. These ideas form the weak interaction theory, which has 
found wide applications in geophysical wave problems [e.g., 
Hasselmann, 1966; Olbers, 1979]. 

But is the oceanic internal wave field a weakly nonlinear 
wave field ? Formally, the weak interaction theory requires that 
the growth time of the amplitude due to wave-wave coupling be 
small compared to the wave period, that is, I•iww/al << co. The 
validity of this condition can, however, no longer be assessed 
from the radiation balance. As was pointed out by Holloway 
[1980, 1982], the condition IS•/AI << co on the spectral growth 
appears to be necessary but not sufficient for the validity of 
weak coupling between the waves which constitute the spec- 
trum. The source term Sww for wave coupling as derived in the 
weak interaction limit and evaluated for the Garrett and Munk 

model is comparable to or even larger than coA in some part of 
the spectral domain (see discussion below). For this reason the 
applicability of weak interaction theory to the oceanic internal 
wave field has recently been questioned [e.g., Holloway, 1980, 
1982], and theories for strong interactions have been proposed 
(a survey can be found in the AIP Conference Proceedings 
[West, 1981]). These approaches have not yet advanced so as 

to prove consistency or even utility for tackling the energy 
balance of the oceanic internal wave field. The interested reader 

is referred to the exhaustive summary by Holloway [1980] in 
the AIP Conference report, which includes further papers on 
this subject. 

Only a few processes have been evaluated in a spectral 
representation. Many investigations consider the behavior of 
discrete internal waves forced by a deterministic external field 
or a Fourier component. Spectral growth rates are inherently 
smaller than growth rates of deterministically forced waves. 
Studies of deterministic models are useful for clarifying the 
dynamics, but they are useless for estimating time scales of a 
random forcing process and give no information on the form or 
magnitude of the source function. Studies of deterministic 
models will not be reviewed here if spectral treatments exist. 
The reader is referred to the review by Thorpe [1975]. 

The following survey of interaction processes is formally 
divided into generation processes (i.e., mechanisms which excite 
waves or enhance those which already exist), dissipation pro- 
cesses (i.e., mechanisms which destroy waves), and transfer pro- 
cesses (i.e., mechanisms which shift energy within the wave 
spectrum while conserving the total amount). This separation is 
not a strict one: depending upon wave number and frequency 
or upon conditions of external fields a process such as wave- 
mean flow interaction may either enhance or attenuate waves. 

5.2.1. Generation. Sources of internal waves exist in the 

interior of the ocean as well as at its boundaries (including the 
turbulent boundary layers). Energy may be extracted from the 
mean flow, from the tides, from atmospheric and mixed layer 
turbulence, and from surface waves. 

Atmospheric forcing: At the surface, internal waves can be 
generated by the atmosphere through resonant coupling to 
traveling pressure fields and fluctuations of the buoyancy flux 
and the wind stress. An atmospheric disturbance with wave 
vector ka and frequency co will generate an internal wave with 
the same horizontal wave vector and frequency; the mode 
number (or the vertical wave number) adjusts to satisfy the 
resonance condition (and the surface radiation condition). 

Spectral transfer rates have been considered by Leonov and 
Miropol'skiy [1973] for pressure forcing and by Kiise [1979] 
for wind stress forcing. The modal source terms are of the form 

S•(kn) - • o0•,• I•0•(0)l'•m•(kn, co•) (48a) 
;zco• 2 +f2 

S•(k•) = • 
(48b) 

where FV(kh, co) and F'(k•, co) are the spectra of pressure and 
wind stress, respectively, and •0•(z) is the vertical normal mode 
defined by (18). Insufficient knowledge of the wave number 
structure of the spectra F v and F • in the internal wave range at 
present prevents a detailed theoretical analysis of these source 
terms. The relative importance of the two mechanisms may 
roughly be estimated as follows: The strongest small-scale wind 
fluctuations at the sea surface are associated with advected 

geostrophically balanced fronts. If the turbulence in the atmo- 
spheric boundary layer is modeled by an ensemble of such 
fronts, the ratio of the two source terms (48) becomes 

• ¾ 

Spv 
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OLBERS' MODELS OF THE OCEANIC INTERNAL WAVE FIELD 1595 

where a linearized stress law x = PaCaUaU [Willebrand, 1978] 
has been used. With f = 7 x 10-5 s-•, Pa = 1.2 x 10-3 g/cm 3, 
Ca=1.5 x 10 -3 , and Ua=16 m/s the ratio becomes (2 
m/s/phase/speed) '• at o• v >>f Here phase speeds of internal 
waves generally are much less than 2 m/s, and the wind stress 
should be more effective than the pressure. Only first-mode 
waves of low frequency may attain phase speeds of about 1 m/s 
(see Figure 22), but at o•v • f the singularity of the ratio again 
expresses the dominance of generation by wind stress. 

The magnitude of the energy transfer by the wind has been 
estimated by Kiise [1979]. Integration of (48b) over low wave 
numbers approximately yields a total transfer rate to near- 
inertial waves, 

C•r = • d2k Sr•(kh)• 2r•F•(f)/L• (49) 
where F•(f) is the density of the stress spectrum at low fre- 
quencies and L• is a measure of the vertical length scale of the 
normal mode v. With typical oceanic parameters, transfer rates 
of about 10-3 W/m: are obtained, which also follows from a 
propagating wave model [K•ise and Olbers, 1980]. This mag- 
nitude of the transfer determined by a dynamical theory agrees 
favorably with the experimental estimates of the low-frequency 
energy flux reported above, which are merely derived from 
kinematical properties of the wave field (basically the phase 
propagation). 

Spectral treatments of the generation of internal waves by 
buoyancy flux have not yet been performed. In a deterministic 
forcing model, Magaard [1973] came to the conclusion that 
this mechanism cannot compete with the effect of strong winds. 

Surface waves: By resonant interaction a pair of surface 
waves with wave vectors kh• and k•: and frequencies w• and w2 
can generate an internal wave with wave vector ka and fre- 
quency o• satisfying 

o• = o• - o•2 k• = k• - kh2 (50) 

where o• equals the eigenfrequency f•(ka) of a mode v. This 
mechanism belongs to the 'classical' candidates of internal 
wave generation (first studied by Ball [1964]), though at first 
sight it appears highly unlikely because the energy transfer 
must bridge the large gap in the frequency and wave number 
domain between the two wave modes. This gap causes one of 
the prominent signatures of the interaction: since o• is much less 
than o• i , one gets also ka << kai, so that the surface wave compo- 
nents propagate almost parallel to each other and perpendicu- 
lar to the generated internal wave. 

The first spectral concept of the process was pursued by 
Kenyon 1-1968], who found only insignificant transfer from an 
observed swell spectrum to the first mode in shallow water. 
Models for open ocean conditions have been worked out by 
Watson et al. [1976] and Olbers and Herrerich [1979] with 
drastically different results: whereas Watson et al. find that 
more than enough energy is available from the interaction to 
maintain the wave field in the deep ocean, Olbers and Herterich 
show that the process is completely unimportant for generating 
waves in the main thermocline. The contradiction is readily 
resolved by considering the statistical assumptions of the two 
models. Watson et al. use a discretized representation of the 
surface wave spectrum by a large but finite set of wave compo- 
nents which have perfectly deterministic phase relationships 
during the growth time (some hours) of the internal wave. Such 
a spectral model seems to require rather extreme situations. 
Olbers and Herterich use a continuous random-phase repre- 

sentation of the spectrum, which seems to be a more reasonable 
model of ocean waves. 

While being insignificant for internal waves in the deep 
ocean, the resonance mechanism may very efficiently generate 
high-frequency internal waves in the upper ocean. The spectral 
transfer from a surface wave spectrum Fg(ka) to the vth mode is 
given by [Hasselrnann, 1966; Kenyon, 1968] 

SgV(kt•) =; d2kt•16(c01 -- 0.) 2 -- co)TgFg(kt•l)Fg(kt•l -- k,) (51) 
The scattering cross section T g depends on the overlapping of 
the surface and internal wave modes. Olbers and Herrerich 

[1979] show that the transfer rate (51) is nearly independent of 
the shape of the frequency distribution of the surface waves. It 
may adequately be parameterized by the total energy •g = 
pg(•g2), the peak frequency •m = (gkm) 1/2, and width a• of the 
frequency distribution and by the angular spreading function 
A(Z) of the spectrum in the form 

as density of the horizontal wave number k• and directional 
angle Z. This expression reflects the generation of the waves at 
right angles to the surface wave components. The dependence 
on the waveguide properties (through the eigenmode) is the 
same as that of the atmospheric transfer rates (48). The re- 
sponse of these mechanisms should therefore have a similar 
structure in the wave number and mode number domain. Fur- 

ther analysis shows predominant generation of the first mode at 
high frequencies and horizontal wavelengths of the order of 1 
km. The total transfer to the first mode 

km2(Cg2)(Sø•(• 2 (53) 

follows by integration of (52) for a three-layer model of the 
stability frequency: a mixed layer with depth d, a thermocline of 
thickness A and stability frequency N0, and a much less strati- 
fied deep ocean. In extreme situations (a rough sea and a 
shallow strongly stratified thermocline) this rate may attain 
values comparable to the rate of generation by wind stress (with 
(•e)=2m e, N0=3 x 10- es-•,d=25m, andA=50mthe 
the energy transfer becomes 10-3 W/me). A separation of the 
contributions from the stress and the surhce wave field in field 

data might then be di•cult. The pronounced directionality of 
the response to surhce waves may be helpful as well as the 
strong parametric dependence on the local wind speed U in the 
case of wind sea: since then % • U • and km • U- • [Hassel- 
mann et al., 1973], the transfer from surhce waves is pro- 
portional to U 7, whereas the wind stress implies only a depen- 
dence U a in the linear coupling •models. This should have some 
influence on the statistical properties of the generated waves. 

Mixed layer turbulence' Extending the theory on radiation 
of internal waves from a turbulent boundary layer by Town- 
send [1968] and others to the ocean, Bell [1978] has recently 
identified another candidate which may compete with the pre- 
viously discussed processes forcing waves at the surhce. The 
turbulent motions within the wind-mixed layer, which is ad- 
vected by near-surhce inertial oscillations, may excite waves in 
the underlying thermocline. The energy transferred to the wave 
field is the direct result of the working of the turbulent motions 
against the buoyancy forces which arise because of the density 
stratification below the mixed layer. If the inertial current U0 is 
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1596 OLBERS: MODELS OF THE OCEANIC INTERNAL WAVE FIELD 

moderately large (Uo _> 5 cm/s), the total transfer may be pa- 
rameterized in the form 

4 { c),.t = • No«polNo(Co 2) 1 + k, Uo JJ 
in terms of the integral scale I of the mixed layer turbulence, the 
rms turbulent displacement (•o 2) •/2 at the base of the mixed 
layer, and the stability frequency N o. Notice that «polNo(•o 2) 
is a measure of the potential energy associated with the corru- 
gation of the mixed layer base. This amount is converted to 
wave engery in a third of the buoyancy period. Representative 
values (No = 10-2 s-•, •o • 0.1D, l = D/2, where D = 25 m is 
the depth of the mixed layer) yield a flux qbmt of the order of 
10-3 W/m e. Waves of high frequency (a significant fraction of 
No) and wavelength of the order of 2nUo/No (some hundred 
meters) are excited. Bell shows that the energy comes predomi- 
nantly from the inertial motion leaving the turbulent field 
quasi-steady. The process therefore is important as a gener- 
ation mechanism of internal waves in the upper ocean as well as 
a dissipation mechanism of inertial oscillations in the mixed 
layer. Resulting decay times range from a day to a week or so, 
in agreement with observations [Pollard and Millard, 1970]. 

Passing reference is made to another mechanism which may 
generate internal waves near the surface. Instability of the 
stratified Ekman boundary layer may excite wave disturbances 
as shown by Kaylot and Faller !-1972]. This process was inves- 
tigated by Stern [1977] and Mollo-Christensen [1977] in an 
'overreflection' model: upward propagating waves gain energy 
as the result of wave-current interaction in the mixed layer and 
are reflected downward. Estimates of spectral transfer rates 
have not been made. 

Tides: The conversion of barotropic tidal energy to baro- 
clinic tides and the coupling to the internal wave field have 
been proposed as a missing link in the global tidal energy 
budget by the tidal community [e.g., Hendershott, 1973; Car- 
twright, 1978]. The rate of loss of energy of the earth-moon 
system is known from observations of the moon's orbit to be 
about 5 x 10 • W rKaula and Harris, 1975], and this must 
equal the total input into the tidal system. Bottom frictional 
dissipation in shallow seas accounts for about a third (1.4-1.7 
x 10 •2 W) of the total required dissipation [Miller, 1966]. 

Bottom friction in the deep sea as well as dissipation in the 
earth's mantle and core are unimportant, so that generation of 
internal tides remains the most promising energy sink. Conver- 
sion of barotropic to baroclinic energy may proceed by differ- 
ent mechanisms. Scattering at the continental slope [Wunsch 
and Hendry, 1972; Schott, 1977] and at rough bottom topogra- 
phy [Cox and Sandstrom, 1962; Munk, 1966] cannot account 
for more than 1% of the total dissipation rate. 

The generation of internal tides by the tidal current over 
bottom irregularities was analyzed by Bell [1975a]. Waves are 
generated at the tidal frequency, and all of its harmonics but the 
energy flux are primarily associated with the fundamental tide. 
For an isotropic bottom spectrum • k•- s/2, Bell obtains a total 
flux 

&t = 2pofN•Ut(6h2>{1 + O(f2/N•2)} (55) 
where U, is the tidal current, N, the bottom stability frequency, 
and (gh 2) the square height of the topography for scales 
smaller than Ut/f With (rSh 2) = (20 m) 2, N, = 7 x 10 -'• s-•, 
and U, = 3 cm/s, internal tides are generated at a rate of 10-3 
W/m 2, amounting to about 3 x 10 TM W globally. This value is 
an order of magnitude smaller than the required dissipation 
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Fig. 33. The latitudinal and modal dependence of the decay time 
1/6 a of the semidiurnal tide in an ambient Garrett and Munk spec- 
trum. 

rate, but it is rather uncertain. At least it suggests that the 
mechanism may pump a significant fraction of the barotropic 
tidal energy to the internal tides in the deep oceanß 

It has been suggested that the energy of the internal tides 
may be spread over the internal wave spectrum by weak non- 
linear interactions of the tidal wave components with waves in 
the continuum. The physics of weak wave-wave interactions 
will be reviewed belowß The coupling of the tidal line to the 
continuum by this mechanism was investigated by Olbers 
[1974] and Olbers and Pomphrey [1981]. The rate of change of 
tidal energy E t is given by 

dEt/dt = -- C• DE t (56a) 

where the 'decay' rate at wave vector k, 

6D(k)=fd3k•fd3ke{T+6(k-k•-k2) 
ß 6(09 -- CO 1 -- roeXA 1 + A2) + 2T-6(k + k• - k2) 

ß 6(co + co• -- co2XA• -- A2)} (56b) 

is an integral of the ambient wave action spectrum A• = A(k•) 
(i = 1, 2) weighted by positive cross sections T + and T-. The 
first term of 6D corresponding to sum interactions is always 
positive but contributes only if co > 2f. For the semidiurnal tide 
co = M 2 this is south of 28.7 ø latitude. The second term arising 
from difference interactions may attain negative values and 
contributes everywhere. The decay rate is therefore not neces- 
sarily positive; for negative 6D the tidal line grows on account 
of the ambient wave field. The energy lost (or gained) by the 
tide must appear in (or be taken from) the internal wave con- 
tinuum. 

Pomphrey et al. [1980] evaluated the decay rate 6D in a 
modal approach for the Garrett and Munk spectrum with 
high-wave number slope -2 and an exponential stability fre- 
quency. Their results apply to a latitude of 30 ø but can be scaled 
to lower latitudes [Olbers and Pomphrey, 1981]. Figure 33 
displays the latitudinal dependence of the decay time 1/6D at 
the frequency of the semidiurnal tide for modes in the range 
1-10. The internal tidal energy is predominantly observed in 
the lowest few modes [Wunsch, 1975b], which appear to be 
rather passive on top of the ambient wave spectrum. Typical 
energy densities of 102 J/m 2 in the internal tides yield transfer 
rates of 10- • W/m 2 at temperate latitudes with a slight increase 
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OLBERS' MODELS OF THE OCEANIC INTERNAL WAVE FIELD 1597 

toward the equator. These values are far too low to be of any 
importance in the energetics of the wave field. 

Mean flow: Two mechanisms by which internal waves may 
draw energy from the mesoscale mean flow have been investi- 
gated in a spectral concept. Bell [1975a] considered the gener- 
ation of lee waves by the mean flow over abyssal hills, and 
Miiller [1974, 1976, 1977] studied the interaction of waves with 
a mesoscale shear flow. 

A steady bottom current Ub interacting with a Fourier com- 
ponent k• of the bottom roughness generates a lee wave of 
frequency k• ß Ub. Wave numbers of upward propagating waves 
are in the range f/U• < k• < N•/U•, corresponding to wave- 
lengths between 400 m and 4000 m for a bottom current of 4 
cm/s. The energy flux may be parameterized as the tidal flux 
(55) and also amounts to about 10 -3 W/m 2 [Bell, 1975a]. 
However, Bell argues that this flux does not contribute to the 
wave energy in the ocean, since strong bottom currents occur 
only locally and are mostly associated with bottom trapped 
modes which decay away from the bottom. The waves thus are 
likely to encounter critical layers. Their momentum will be 
absorbed again by the mean flow in the bottom kilometer of the 
ocean, and their energy will partly be used for mixing, giving 
rise to eddy diffusivities as high as 10-3 m2/s in this part of the 
water column. 

The interaction of an internal wave with a mean shear flow is 

described by the ray equations (7) and conservation of action 
(13). The wave exchanges energy with the mean flow such that 
action •/[c0 - kU(z)] remains constant. However, the system is 
reversible: a wave that would gain energy on its way would lose 
the same amount reflected back to its initial level if other 

processes (e.g., critical layer effects) are disregarded. A sym- 
metrical field of freely propagating waves would thus remain 
unaffected by a mean shear. This is not true in the presence of 
processes which try to relax local distortions of the spectrum by 
the shear to some shear-independent equilibrium shape. As 
shown by Miiller [1974, 1976, 1977], the balance between the 
tendency of the shear to distort the spectrum and the internal 
relaxation tendency of the wave field leads to asymmetries in 
the wave field such that the field exerts a stress which opposes 
the mean shear. The effect may be parameterized by eddy 
viscosities which depend on the equilibrium wave spectrum. 
Using the Garrett and Munk model, Mfiller predicted the very 
large vertical wave-induced eddy viscosity of 0.4 m2/s and a 
horizontal one of 7 m2/s. Because of the large aspect ratio of the 
mean flow the vertical viscosity yields a much larger energy 
input into the wave field (a few milliwatts per square meter) 
than the horizontal one. 

Mfiller's results suggested two important conclusions. The 
mechanism is an effective tool for dissipating mesoscale kinetic 
energy, and it allows the deep-ocean wave field to stay ener- 
gized independent of boundary forcing (correlations of the 
spectrum with surface forcing could not convincingly be dem- 
onstrated). A local energy balance of the wave field was pro- 
posed [Olbers, 1974; Miiller and Olbers, 1975] according to 
which the energy gain from the mean flow is transferred by 
wave-wave interactions down the spectrum and dissipated by 
wave breaking. So far, experimental tests of this model have 
failed to support it. Correlations between the spectral level and 
the squared mean shear could be detected [Frankignoul, 1976; 
Frankignoul and Joyce, 1979], as displayed in Figure 32, which 
suggest an energy exchange but allow no conclusions about the 
mechanism. But correlation analysis of the vertical flux of 
horizontal momentum in the internal wave band and the 

squared mean shear showed that the eddy viscosity cannot be 
as high as Miiller's value. This was confirmed by Ruddick and 
Joyce [1979], who were able to estimate an upper bound of 
0.02 m2/s for the vertical viscosity from Polymode data. The 
data correlation was in fact so weak that in some cases even the 

sign of the viscosity could not be determined. With this value 
the energy input to the wave field is 2 x 10 -'• W/m 2 or less, and 
the mean flow would represent only a minor energy source. 
Ruddick and Joyce also suggest a reason for the failure of 
Mfiller's theory. They demonstrate that solutions to the radi- 
ative transfer equation (47) exist in the presence of a shear flow 
and a particular relaxation process (the induced diffusion of 
McComas and Bretherton [ 1977]; see below) which have nondi- 
vergent momentum flux and thus are in equilibrium with the 
mean flow. 

Whereas the conception of a vertical wave-induced viscosity 
could not be well established by experiments, Brown and Owens 
[1981] found marginally significant correlations between the 
horizontal shear and the horizontal wave-induced Reynolds 
stresses in the Local Dynamics Experiment of Polymode. The 
analysis yields a wave-induced horizontal viscosity of the order 
of 10 2 m2/s at depths of 600-800 m, much larger than the value 
predicted by Mfiller. With the observed shear variance of the 
order of 10- TM s -2 one arrives at a local energy input of 10 -6 
W/m 3 and thus up to 10- 3 W/m 2 as input per unit surface area. 

In view of these observational results it remains unclear how 

to judge Mfiller's theory of wave-induced viscosities. The fail- 
ure to substantiate a vertical viscosity could well be attributed 
to errors in determining the vertical velocity from a linearized 
heat equation. The estimation of the horizontal viscosity, on 
the other hand, hinges upon rather marginal correlations. Fur- 
ther investigations appear to be necessary. 

5.2.2. Dissipation. A survey of the many mechanisms by 
which internal waves can dissipate has been given by Thorpe 
[1975]. As yet, it is still a matter of speculation which of these 
actually work in the ocean to limit the growth of the observed 
spectrum. Processes suggested in this respect are wave breaking 
by gravitational instability [Orlanski and Bryan, 1969] and 
shear instability [Phillips, 1966], and critical larger absorption 
[Bretherton, 1966]. 

Instabilities: Gravitational overturning of a wave occurs if 
the fluid particle velocity exceeds the phase velocity. Shear 
instability requires the local Richardson number to be less than 
¬. Obviously, both criteria depend not only on the wave 
properties (slope and shear) of the wave which actually breaks 
but also on the ambient flow, including other waves which 
might be present. In tank experiments, Thorpe [1978a, b] has 
demonstrated how these mechanisms work separately, that is, 
overturning in the absence of ambient shear and shear insta- 
bility in the absence of ambient wave disturbances, and how 
each may be enhanced if the constituents of the other mecha- 
nism are present. In these experiments the breaking can be 
attributed to a particular wave in the fluid. In the many-wave 
environment of the ocean, as pointed out by Greg•l and Briscoe 
[1979-1, there may be no identifiable 'breaking internal wave,' 
only a breakdown in the fluid due to internal waves. Breaking is 
a more amorphous, unrecognizable process [Holloway, 1980] 
which occurs locally in the fluid and thus affects a broader band 
in the spectrum. 

It does not appear obvious if wave breaking in the ocean 
prefers one of the two modes of instability. Experimental evi- 
dence for the occurrence of shear instability has been presented 
by in situ flow visualization by Woods [1968]. Time series of 
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the Richardson number have been computed by Eriksen [1978] 
using simultaneous current and temperature observations 
made at a vertical separation of 7 m (density was estimated 
from a mean T-S relationship). The Richardson number com- 
puted for this separation indicated a cutoff at about ¬. Low 
values are caused by increasing shear rather than decreasing 
stability frequency and tend to be associated with temperature 
inversions. This supports the observation of Woods [1968] that 
Kelvin-Helmholtz billows occur near the crests of the growing 
waves, where their shear is greatest. 

Critical layers: The properties of wave propagation near 
critical layers has been discussed in section 2. The value of the 
ambient Richardson number controls whether an incident 

wave is absorbed, reflected, or even overreflected. Critical layers 
represent a sink of wave energy for large values of the ambient 
Richardson number. In the ocean, critical layers are likely to 
exist for internal waves with short vertical wavelengths. A wave 
with horizontal wave number kh parallel to the mean current 
U(z) and intrinsic frequency tOo(Z ) = to - khU(z) at depth z will 
encounter a critical level at z c if the mean shear is large enough 
to satisfy 

too(Z)-f= k•,{U(zc) - U(z)} (57) 

Thus waves in the spectral domain too(Z) -f < k•A U at depth z 
will approach their critical layer in a depth range over which 
the mean flow changes by AU. Equivalently, for N(z)>> 
too(Z) >> fthe vertical wave number must satisfy 

l(z) > lc(Z)= N(z)/at (58) 

This vertical wave number may attain typical values of 10 -3 
cm- • in the upper ocean (N = 10- 2 s- • and AU = 10 cm s- •) 
and the main thermocline (N = 10 -a s-• and AU = 1 cm s-•). 
Thus waves with vertical wavelengths shorter than about 60 m 
are susceptible to critical layer effects. Munk [1980] pointed out 
that (as with the instability mechanism discussed above) a large 
fraction of the velocity difference A U may be ascribed to low- 
frequency and low-wave number waves. Then critical layer 
absorption (and likewise overreflection) would not be con- 
sidered an external process for the wave field but rather would 
cause an.internal transfer of energy. 

Dissipation rates: Little is known about the rate at which 
wave breaking extracts energy from the spectrum. A direct 
estimate of the dissipation rate in observed Kelvin-Helmholtz 
billows in the Mediterranean seasonal thermocline was derived 

by J. D. Woods (personal communication, 1979). From the 
billow height L, overturning speed u, and intermittency factor I, 
Woods gets for the dissipation rate e • IUa/L some 10 -a 
W/m 2 over 100 m depth. Some information can be obtained 
from indirect considerations. The kinetic energy released by 
breaking will partly be used to mix the fluid and thereby 
increase the mean potential energy. If this turbulent mixing is 
parameterized by an eddy diffusivity K, the local rate of in- 
crease is 

gt, = KN2 (59) 
The remaining part of the energy is converted to smaller scales 
at a rate qc where it will eventually be dissipated by molecular 
action. The ratio ep/(ev + e•c ) gives the efficiency of converting 
kinetic wave energy to mean potential energy. Following 
Thompson's [1980] arguments, this ratio should just be the 
critical Richardson number 

%/(% + esc)= Ric = ¬ (60) 
which agrees well with estimates by Thorpe [1973], who stud- 

ied breaking events in a tank. The relations (59) and (60) can be 
used to evaluate the total dissipation rate due to breaking. If 
internal waves were responsible for mixing the ocean with the 
'classical' diffusivity 10 -'• m2/s [Munk, 1966], this would re- 
quire a total local dissipation of 4 x 10 -6 W/m 3 (using a main 
thermocline N - 3 x 10-3 s-•), which amounts to some 10-3 
W/m 2 by vertical integration [Garrett and Munk, 1972b]. 
Recent measurements of temperature fine structure [e.g., Gregg, 
1977] do not support a value as high as 10 -'• m2/s for the 
vertical diffusivity (see also Garrett [1979] and Gregg and 
Briscoe [1979]). Values of the order of 10 -6 m2/s were found, 
which reduces the dissipation rate in the main thermocline to 
some 10 -8 W/m 3 locally or 10 -5 W/m 2 as vertical integral. 
Estimates of esc can be obtained from velocity microstructure 
measurement [e.g., Osborn, 1978; Gatgert et al., 1981] if one 
assumes that all of the variance in these scale (less than 1 m) 
derives from wave dissipation. Observed values for esc range 
from 10 -6 W/m 3 to 10 -5 W/m 3 in the upper few hundred 
meters of ocean, which supports Woods' direct estimate men- 
tioned above. Deeper values of es½ have not been reported. 

The importance of critical layer absorption has been esti- 
mated by Ruddick [1980]. Taking the Garrett and Munk spec- 
trum to be fully asymmetric so that all wave components 
propagate vertically in one direction in a shear flow U(z), the 
momentum flux (UlU3)lost associated with the spectral region 
to- kU(z)<f subject to absorption is found to be less than 
5 x 10-2 cm2/s 2, arising mainly from low frequencies for cur- 
rent speeds U < 20 cm/s. If one assumes that all of this flux is 
lost in a shear layer of AU = 5 cm/s, the energy loss of the wave 
field would amount to Az(uxu3)•o•t(AU/Az) = 2.5 x 10 -½ W/m 2. 
The observed asymmetry in the wave field is 10-20% at low 
frequencies [Miiller et al., 1978], so that this value must be 
considered as an upper bound for the loss due to critical layer 
effects. Still, the loss rate is comparable to the dissipation rates 
estimated for the instability mechanisms. 

The relationship between wave dissipation and oceanic fine 
structure has been reviewed by Gregg and Briscoe [1979] and 
Munk [1981], and the aspects of mixing due to internal waves 
by Garrett [ 1979]. 

5.2.3. Transfer. There are processes which redistribute 
energy within the spectrum but conserve its total amount. 
These effect a cascade of energy through the spectrum and may 
play an important role in the interplay of generation and 
dissipation and the shaping of the spectrum. The most promi- 
nent transfer process is the weak resonant coupling among the 
spectral components. Another possible mechanism for transfer 
is resonant coupling of internal waves to external steady fields 
(Bragg scattering), for example, bottom inhomogeneities or 
stationary fine structure in the density field. 
Resonant wave-wave interactions: Because of the nonlinear 

terms in the equations of motion a triad of internal waves with 
frequencies to, to•, and to2 and wave vectors k, k•, and k 2 may 
interact resonantly and redistribute energy among themselves if 

to +_ to• _+ to2 =0 

k-I- kx + k2 =0 

The form of the spectral transfer rate of this process, 

Sww(k) = •d3klSd3k 2 

ß - - A36(k - - k)O(o - - ro) 

(61) 

+ 2T-(AiA2 + AAi - AA2)•(k - kl + k2)•ro- rol + o>2)} 

(62) 
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has been worked out by Hasselmann [1966], who also pointed 
out its formal similarity to Boltzmann's collision integral for 
interacting particles, Intensive study and evaluation of the 
transfer integral began when Garrett and Munk [1972a] pub- 
lished their first version of the wave spectrum. This continued 
in intimate relation with the construction of the later spectral 
models described in section 3. The main changes in the spec- 
trum concerned the wave number distribution, which was con- 
verted from a simple top hat in the 1972 version to the power 
law dependence with t = 2.5 in the 1974 version (32) and t = 2 
in the 1979 version (37). These changes, even the apparently 
minor change in the wave number slope between the latter 
versions, had profound influence on the transfer rate (62). 

Using the early version of the spectrum, O!bers [1974, 1976] 
found that wave energy is systematically transferred from the 
intermediate frequency range to f < co < 2fand toward smaller 
vertical wavelengths at a rate of 3 x 10 -3 W/m 2, implying a 
delivery time scale of the order of 10 days. The time scale of the 
transfer varies as the stability period, suggesting that the inter- 
actions are most intense in the main thermocline. The transfer 

to the high-wave number region would drain the whole spec- 
trum in a few days, since the increasing shear will create turbu- 
lence and mixing. The later, 1975 model of the spectrum yields 
lower transfer rates. McComas and Bretherton [1977] have 
repeated the calculations with similar results, but they found a 
strong sensitivity of the spectral transfer to the wave number 
slope. This was confirmed by Pomphrey et al. [ 1980] by system- 
atic variation of the spectral slope parameter. Following their 
analysis a spectrum with wave number slope t = 2 is closest to 
equilibrium in the high-wave number region, but the major 
flow of energy is still from low to high to high vertical wave- 
lengths and low frequencies at a rate of 6 x 10 -'• W/m 2. 

McComas and Bretherton [1977] were able to identify three 
classes of resonant wave coupling which are responsible for 
much of the complex transfer in a spectrum with the form of the 
Garrett and Munk model where the energy is mainly in low 
frequencies and large vertical scales and the shear is mainly in 
small vertical scales [cf. McComas and Mfi'!!er, 1981b]. A class 
may dominate the transfer in some region either because the 
cross section of the triad is large or because the triad has one 
small wave number and low-frequency component with a very 
large action. The resonant triads of the three classes are 
sketched in Figure 34. The Garrett and Munk models are in 
approximate equilibrium with two of these mechanisms (elastic 
scattering (ES) and induced diffusion (ID)), whereas the third 
process (parametric subharmonic instability (PSI) controls the 
energy flow to the low-frequency, high-wave number region 
with the transfer rates given above. The processes are also 
responsible for a rapid relaxation of spectral perturbations to 
the equilibrium form. This was demonstrated by McComas 
[1977], by numerical calculation of the transfer in perturbed 
spectra, and by McComas and Mfi'!!er [1981a], who derived 
analytical approximations of the transfer rates. A brief survey 
of the properties of the triad classes follows. Their consequences 
for an overall spectral balance will be postponed to the next 
section. 

In the induced diffusion mechanism (Figure 34a) a high- 
frequency, high-wave number component interacts with a 
wave component of much lower frequency and wave number to 
generate another high-frequency, high-wave number compo- 
nent. The process has some similarity with diffusion of particles 
in physical space, and, in fact, the transfer rate in the high- 
frequency, high-wave number region due to ID interactions 
takes the form of a diffusion of wave action (which is the 

(a) (b) (c) 
Fig. 34. Schematic representation of (a) induced diffusion, and (b) 

elastic scattering, and (c) parametric subharmonic instability triads, 
displayed in (top) wave number space of vertical wave number fi versus 
horizontal wave number •z and (bottom) a stretched frequency-vertical 
wave number space. The aspect ratio 0q/5 is equivalent to a fixed 
frequency to, as internal wave frequency depends only on the wave 
number slope 0qfi [McComas, 1977]. 

particle density in wave number space); that is, the ID contri- 
bution to (62) becomes 

(•Afk)• • • •t /ID =•3 D•3 A(k) (63) 
with a diffusion coefficient D determined by the shear spectrum 
of the low-frequency, low-wave number part of the wave field. 
It appears obvious from (63) that the diffusion term may 
become very large and the corresponding time scale very small 
(even smaller than the wave period) if the spectrum develops 
sharp gradients. As was pointed out by Holloway [ 1980, 1982], 
the assumption of weakness of the resonant interactions under 
which (62) was derived is then violated. For a smooth spectrum, 
such as the Garrett and Munk models, the ID time scale is 
larger than the wave period except at very high wave numbers. 
The wave fields thus will respond to a source or sink of energy 
in the spectrum with weak interactions if the sources and sinks 
are weak so that a slow ID diffusion can manage the redistri- 
bution. The observed low midocean dissipation rates (see sec- 
tion 5.2.2) are compatible with weak resonant interactions 
down to vertical scales of 1 m [McComas and Mfi'!!er, 1981a, b]. 

The rate of change of the energy spectrum due to ID pro- 
cesses is 

where 

OE(k)• = • • Oco (64) •t /ID L0•--•'-3 Q A --' •3 coQA -- Q A •k-• 

Q.a(k) = D• A(k) (65) 
is the flux of action in wave number space. Hence the rate of 
change of the energy spectrum is given by the divergence of the 
energy flux coQA associated with the action flux and a local (in 
wave number space) source -Q,•co/•k3 describing the loss of 
high-frequency energy to the low-frequency, low-wave number 
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'"%QA (action) • • 
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(energy) •• i • / 
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...... • 
i I % i 

VERT. WAVENUMBER 

Fig. 35. Schematic representation of the indued diffusion transfer. 
If action is transfcrrcd with a uniform flux Q• across the frequency 
range • to •:, the energy flux is nonunifo• but accumulates in the 
low-frequency, low-wave number region. 

component participating in the ID triad. Clearly, the action 
and the energy spectrum in the high-frequency, high-wave 
number region are in equilibrium with respect to the ID trans- 
fer if Q• is independent of k 3. Whereas action then flows uni- 
formly from large to small vertical scales, energy does not do so 
but accumulates in the low-frequency, low-wave number region 
unless Q• = 0 (Figure 35). A nonflux solution (i.e., Q• = 0) to 
(63) yields a slope t = 2 for the energy spectrum at high wave 
numbers; a constant-flux solution (i.e., Q• = Q•(kn)-7: 0) is 
compatible with t = 2 at high wave numbers if D ~ •, which 
requires a slope of t = 2.5 at low wave numbers, However, both 
solutions have their drawbacks. The nonflux solution implies 
no dissipation at high vertical wave numbers, which appears 
unlikely, since these waves contribute most of the shear of the 
wave field. The constant-flux solution implies that the low- 
frequency, low-wave number region is not in equilibrium. 

In the elastic scattering mechanism (Figure 34b) a high- 
frequency wave is scattered into another one with approxi- 
mately reversed vertical wave number by interaction with a 
low-frequency component of approximately twice the vertical 
wave number. This Bragg scattering thus tends to eliminate 
vertical asymmetries in the wave field. The process is very 
efficient (but still weak except in the dissipation range) with 
exclusion of the very low frequencies. The asymmetries of near- 
inertial waves do not relax, in agreement with the observations 
of the wave field asymmetry reported above. 

The last mechanism, the parametric subharmonic instability 
(Figure 34c), describes the decay of a low-vertical wave number 
component into two high-vertical wave number components 
of about half the frequency. This process accounts for much of 
the transfer to the near-inertial band at high vertical wave 
numbers in the Garrett and Munk models. The growth time is 
about 100 inertial periods at 100 m vertical wavelength and 
decreases to about one-third the inertial period at 1 m (vio- 
lating again the weakness assumption only at very high wave 
numbers). 

Bragg scattering at fine structure: The scattering of internal 
waves at horizontally layered irreversible fine structure of the 
stratification was considered by Mysak and Howe [1976] by 
modeling the latter in the form of a randomly varying stability 
frequency rSN2(z) -- N2(z) -- (N2(z)). Waves with vertical wave 

number k 3 are scattered backwards at the Fourier component 
at -2k 3 of r$N 2. The source term may be cast into the form 
[Miiller and Olbers, 1975] 

n rø 2 F.rS(2•) {A(kn,-•)- A(kn, •)} (66) S'rs(k) = 5 Iv3(k)l 
where FSS(fi) is the one-sided spectrum of rSN2(z)/(N2(z)). Thus 
the interaction affects only the asymmetric part of the spec- 
trum, which would decay exponentially with a time scale 

ß = (4/nro)•FSS(2•) -• (67) 

for frequencies f << co << N. The difficulty in separating the irre- 
versible and reversible contributions in observed fine structure 

spectra has been eludicated in section 4. An evaluation of (66) 
therefore is not yet possible. The scattering of high-frequency 
internal waves at irreversible fine structure has its analogue in 
the elastic scattering mechanism, which describes the back- 
scattering of high-frequency waves at the low-frequency wave 
shear which causes the reversible part of the observed fine 
structure. 

Bottom scattering: The effect of random bottom inhomoge- 
neities on internal wave modes was studied by Cox and Sand- 
strom [1962] in an attempt to explain the conversion of the 
surface tide into internal tides. The source term for a random 

wave field and a bottom spectrum Fb(kn) is of the form [Miiller 
and Olbers, 1975] 

•b•,s(k) = d2kh• dfi• T•'SF•'(kn- kay) 

ß {v3fk)A(k•) + v3fk•)A(k)} (68) 

with a cross section T •s. This flux has not yet been adequately 
evaluatedß The first term represents the flux to the wave vector 
k arising from the scattering of the downward propagating 
spectral component; the second term describes the extraction of 
energy at k due to scattering of this component into other 
upward propagating waves. An order of magnitude of the 
source terms follows from (68): 

;d3klck•s(k)l/•d3ko3A=(s2>/n 2 (69) 
where s is the slope of the topography. Typical slope variances 
of abyssal hill topography are in the range 10-2-10-• [Bell, 
197561, so that roughly a fraction 10- 3-10-2 of the downward 
propagating wave flux will be redistributed in wave number 
space. In comparison to the redistribution by wave-wave inter- 
action, the bottom scattering is thus negligible. 

6. CONCLUSIONS: 

A PERSPECTIVE OF THE SPECTRAL BALANCE 

The discussion of individual processes affecting the oceanic 
internal wave field is summarized in Figure 36 using the illus- 
trative notation of Thorpe's [1975] visualization of the sources 
and sinks of internal waves. A sign of progress since then is that 
values of the energy fluxes can now be assigned to many of the 
interactions, clarifying their relevance. A summary is given in 
Table 1. There are many interactions which have been left out 
because their effect on the wave spectrum could not be esti- 
mated or turned out to be small. Scattering at fine structure has 
been mentioned as causing symmetry of the wave field. Gener- 
ation by atmospheric pressure and buoyancy flux fluctuation is 
presumably neligible. Shear instability of the mean flow might 
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Fig. 36. Sketch of interaction processes affecting the internal wave field in the upper and the deep ocean. Energy fluxes 
are in units of 10 -3 W/m 2. Abbreviations are as follows: •, wind stress; ml, mixed layer turbulence; sg, surface gravity waves; 
cv, near-inertial waves; mf, large-scale mean flow; t, baroclinic tides; lw, lee waves; bs, bottom scattering; el, critical layers; 
wb, wave breaking; ID, induced diffusion; and PSI, parametric subharmonic instability. 

be important [see Thorpe, 1975] as well as scattering of internal 
waves at mesoscale fronts in the upper ocean [Olbers, 1981a-I. 

Surprisingly, many of the energy fluxes associated with gen- 
eration and transfer processes of internal waves turn out to be 
of the same order of magnitude, 10- 3 W/m 2. Such a magnitude 
has been found to be typical for the energy input in other 

oceanic motions. Gill et al. [1974] estimate the energy input 
into the Sverdrup flow as 10-3 W/m 2. Frankignoul and Miiller 
[1979] give a lower bound of 10 -'• W/m 2 for the generation of 
baroclinic Rossby waves by stochastic atmospheric forcing. 
Bryden [1982] estimates the net local conversion of mean to 
eddy energy as 1.8 x 10 -6 W/m 3. These examples demonstrate 

TABLE 1. Summary of Energy Fluxes 

Process 

Energy Flux, 
10 -3 W/m 2 

Upper Main 
Authors Ocean Thermocline Spectral Domain 

Wind stress 

Surface gravity waves (sg) 
Mixed layer turbulence (ml) 
Mean flow (mf) 

Vertical viscosity 
Horizontal viscosity 

Baroclinic tides (t) 
Wave-wave interaction (PSI) 

Lee waves (lw) 
Critical layers (el) 
Dissipatiort (d) 

Flux in inertial waves (v) 

Kiise [1979], 1 
Kdse and Olbers [1980] 

Olbers and Herterich [1979] _< 1 
Bell [1978] 1 

Ruddick and Joyce [1979] 
Brown and Owens [ 1981] 
Olbers and Pornphrey [1981] 
Pornphrey et al. [1980] 

Bell [1975a] 
Ruddick [1980] 
Osborn [ 1978] 
Woods [1968] 
Garrett [1979] 
Kiise and Olbers [1980] 
Perkins and Van Leer [1977] 
Learnan [1976] 
IWEX [Miiller et al., 1978] 
Rossby and Sanford [ 1976] 

1 

0.7 

<0.2 

1 
<0.01 

0.6 

(•) 
<0.1 

0.01-0.1 

0.6 
3 

1 

near inertial 

high frequencies (trapped) 
high frequencies (trapped) 

low-frequency, 
high-wave number domain 

dissipated close to bottom 
low frequencies 

near inertial 

(downward flux) 

Energy fluxes are in units of 10-3 W/m 2. The references are not intended to be a complete listing. 
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1602 OLBERS.' MODELS OF THE OCEANIC INTERNAL WAVE FIELD 

that internal waves play an active dynamical role in the inter- 
play of oceanic motion. A tentative picture of this interplay has 
recently been put forward by Woods [ 1980]. 

In view toward a spectral balance, the main statements in 
Table 1 are as follows: 

1. The flux in near-inertial waves is downward, of the same 
magnitude in the upper ocean and the main thermocline, and 
consistent with fluxes estimated from inertial wave generation 
by wind stress. 

2. Energy fluxes into the upper ocean wave field as well as 
dissipation rates appear to be larger than in the main thermo- 
cline. 

3. The transfer by wave-wave interaction to small scales (in 
the main thermocline) is not entirely compatible with dissi- 
pation rates estimated from fine structure observations. 

4. Generation rates are not entirely compatible with dissi- 
pation rates (in particular in the main thermocline). 

This information is too meager to construct a well-founded 
spectral balance. Because of the uncertainties in all of the 
estimates of the fluxes a listing such as in Table 1 could only 
reveal a balance if there were one dominant source of energy. 
Apparently, such a source does not exist (it certainly would 
have been found experimentally), and simple models of the 
balance such as those proposed by Miiller and Olbers [1975] 
and Bell [ 1975a] are no longer convincing. 

Consideration of Table 1 suggests rather that the oceanic 
wave field may draw energy from many sources and that forc- 
ing as well as dissipation is weak. It may well be that character- 
istics of the forcing have only marginal control over the energy 
content and maybe even less over the shape of the spectrum. 
The wave field may be in such a state where any additional 
weak input of energy is taken by nonlinear transfer to the 
spectral domain where dissipation can handle it. A wave field 
with a saturated spectral form at dissipation scales is the result 
of a two-dimensional numerical simulation by Orlanski and 
Cerasoli [1981]. This two-dimensional model integrates the 
equations of motion and simulates dissipation according to an 
overturning criterion. The authors point out that dissipation in 
the saturated high wave numbers may occur simultaneously 
even without cross-spectral transfer if low-wave number 
energy is added: the low-wave number component may just 
increase the local slope (in physical space) of the wave super- 
position such that the overturning criterion is met. The simulat- 
ed equilibrium spectra bear some resemblance to observations 
(one may object to the comparison of a three-dimensional 
spectrum with a rotationless two-dimensional simulation), but 
the model gives no indication of what kind of triad coupling is 
responsible for the transfer in the spectrum and how dissipation 
affects it. An advantage over the weak interaction approach is 
that the numerical simulation can handle strong wave coupling. 

An intriguing, complementary approach toward the spectral 
balance was recently made by McCornas and Miiller [1981a]. 
This approach also assumes that forcing and dissipation are 
weak and that nonlinear wave coupling is the main key to the 
spectral balance. However, McComas and Mfiller's model is 
based on the weak interaction limit leading to the spectral 
transfer rate (62) and the dominant triad interactions in the 
Garrett and Munk model discussed above. The balance model 

is sketched in Figure 37. The forcing is assumed at low vertical 
wave numbers fi < fi,. Dissipation is assumed weak and 
smooth in wave number space (a minimum of assumptions 
leads to a spectral dissipation which is proportional to the 
shear spectrum). Energy is transferred at low frequencies by the 

VERT. WAVENUMBER (m 4) 
-3 -2 -1 lO lO lO lO 0 

lO 1 

10ø' 

GENER_•ATION I ,,,,% .... • • I % REGION . I •.un•,An, • • I % 

A'IAI, I 
% I% ..... . •1 DISSIPATION 

,e. ,e c 

lO 
71 

Fig. 37. Schematic view of the energy balance of the internal wave 
field. Energy is generated at low vertical wave numbers fi < fi,. It is 
transferred at high frequencies by the !D mechanism and at low 
frequencies by the PSI mechanism to high wave numbers fi > fie. Here 
dissipation is dominant over the weak nonlinear transfer I-McCornas 
and Miiller, 1981b-I. 

PSI mechanism and at high frequencies by the ID mechanism. 
The break point tic is determined as the wave number where the 
nonlinear transfer can no longer keep up with the dissipation. 
The balance, worked out by a detailed analytical treatment of 
the transfer expressions for the ID and the PSI processes, is 
based on a solution with constant energy flux (not action flux as 
considered above) for both mechanisms between fi, and tic. 
Only the combination of ID and PSI yields equilibrium of the 
vertical wave number spectrum. The model predicts spectral 
slopes p-- 2 and t - 2 of the Garrett and Munk model E(•o, 
fi) • •o-v,8 -t at high frequencies. At low frequencies the slope 
t = 2 of the vertical wave number spectrum E(fi) • fi-t is deter- 
mined, but not the frequency dependence. The constant energy 
fluxes Qe due to the ID and the PSI processes in the inertial 
range fi, < fi < tic are proportional to the total energy E in the 
wave field and the shear S, = fi, 2E of the energy-containing 
waves, that is, 

Qe •' ES, = 1•,2E2 (70) 
Only three of the four parameters œ,/•,,/•c, and the total shear 
S, are independent'the cutoff scale/•c may be expressed as 

= (71) 

The authors argue that the total shear S- N2/Ri should be 
fairly constant, so that effectively the model has only two 
parameters E and fi,. Thus these two rough measures E and fi, 
of the spectrum completely specify the rest of it. In the pre- 
sumed slow evolution of the spectrum, E and fi, change slowly, 
on a time scale of the order of 100 days. The quadratic depen- 
dence of the flux Qe on the dissipation range guarantees rapid 
relaxation of the spectrum in the energy-containing region. The 
relations (70) and (71) indicate that in response to growth of 
either the source region (i.e., fi,) or the total energy E (which in 
practice is the content of the energy-containing range 0 < fi < 
•,) the flux to the dissipation region, and hence the dissipation 
rate, increases and the inertial range shrinks. For the scale 
parameters of the Garrett and Munk model the break point tic 
between the inertial range and the dissipation range is at 1 m- •, 
which is just where observed temperature (cf. Figure 24) and 
velocity spectra (cf. Figure 25) show a change in slope. 

The essential features of this spectral balance were confirmed 
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OLBERS.' MODELS OF THE OCEANIC INTERNAL WAVE FIELD 1603 

by a numerical time-stepping solution of the radiative transfer 
equation which considers the complete nonlinear transfer term 
(62) and the spectral dissipation model. Apparently, the model 
of McComas and Miiller [1981a] gives the most complete view 
of the spectral balance today. However, many important 
questions which did come up in the course of the recent internal 
wave research remain untouched. The model of McComas and 

Miiller applies to the wave field in the main thermocline. The 
balance in the upper ocean will certainly be quite different, 
since the state of the wave field differs. A particular problem is 
whether it can be modeled separately from the deep-ocean 
wave field. Coupling of the superenergetic high frequencies in 
the seasonal thermocline to the lower frequencies in the main 
thermocline (via the PSI mechanism?) may be important. An- 
other problem is the fate of the near-inertial flux. Complete 
transfer of the asymmetric low-frequency part to the wave 
continuum would represent a large and presumably steady 
energy input, which is hardly compatible with the low dissi- 
pation rates. Dissipation of near-inertial energy in the benthic 
boundary layer is weak [Fu, 1981; D'Asaro, 1982], so that the 
question arises of whether the near-inertial flux may be over- 
estimated (of course, this question may also apply to other 
energy fluxes in Table 1). Most estimates of the near-inertial 
flux are obtained from the relation (10b) by computing the 
vertical group velocity v3 = 2(c0-f)//• at near-inertial fre- 
quencies from the blue shift of the inertial peak. An accurate 
determination of the blue shift requires long records. Fur- 
thermore, Fu's [1981] model of the global near-inertial wave 
field has revealed that the peak in the frequency spectrum does 
not necessarily derive from the asymmetric part of the spectrum 
which alone causes a vertical energy flux. 

Aside from such particular items of the energy balance a 
concept must be put forward which explains the universality of 
the spectrum. The known sources of energy are not sufficiently 
steady and uniformly distributed to account for the universal- 
ity. A simple but important idea was presented by C. S. Cox 
and C. L. Johnson (unpublished manuscript, 1979) and dis- 
cussed by Garrett and Munk [1979]. If internal waves do not 
dissipate quickly, as suggested by the low dissipation rates in 
the deep ocean, they can travel large distances. The low- 
frequency, energy-containing waves with nonlinear relaxation 
times of the order of 100 days can propagate 1000 km within 
their relaxation time of some days. Beyond this mean free path 
of the wave groups, wave energy may diffuse and spread over 
even larger regions (in the same way as phonons propagate in a 
lattice and interact resonantly, leading to a diffusion of heat). 
This would make the energy level almost uniform. Universality 
of the spectral shape could then be understood from the bal- 
ance model of McComas and Miiller [1981a]. 
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